| HTML 4 for Dummies, 4th Edition
HTML 4 by Ed Tittel and Natanya Pitts ISBN:0764519956
pUMMIES John Wiley & Sons © 2003 (408 pages)

= Whether your goal is to build a simple, text-oriented Web site

or one loaded with frames, graphics, and animation, this step-
by-step book will put you on the right track.

Table of Contents

HTML 4 For Dummies, 4th Edition

Introduction

Part | - Meeting HTML in Its Natural Environment
Chapter 1 - The Least You Need to Know about HTML and the Web
Chapter 2 - HTML at Work on the Web

Chapter 3 - Creating Your First HTML Page

Part 11 - Getting Started with HTML

Chapter 4 - Structuring Your HTML Documents
Chapter 5 - Linking to Online Resources
Chapter 6 - Finding and Using Images

Chapter 7 - Top Off Your Page with Formatting
Part 111 - Taking HTML to the Next Level

Chapter 8 - HTML Tables

Chapter 9 - HTML Frames

Chapter 10 - HTML Forms

Part 1V - Extending HTML with Other Technologies
Chapter 11 - Getting Stylish with CSS

Chapter 12 - HTML and Scripting

Chapter 13 - Making Multimedia Magic

Chapter 14 - Integrating a Database into Your HTML
Chapter 15 - How HTML Relates to Other Markup Languages
Part V - From Web Page to Web Site

Chapter 16 - Creating an HTML Toolbox

Chapter 17 - Setting Up Your Online Presence
Chapter 18 - Creating a Great User Interface
Part VI - The Part of Tens

Chapter 19 - Ten Ways to Exterminate Web Bugs
Chapter 20 - Ten HTML Do’s and Don’ts

Part V11 - Appendixes

Appendix A - HTML 4 Tags

Appendix B - HTML Character Codes

Appendix C - Glossary

Index

Cheat Sheet - HTML 4 For Dummies, 4th Edition

List of Figures
List of Tables

List of Listings
List of Sidebars

Back Cover
Do you speak HTML? Never fear—this friendly book will save you from getting tangled in the language of the Web.
It's loaded with examples, illustrations, and step-by-step instructions on everything from basic tags and attributes
to cool new stuff our readers asked about, like adding sound, video, and animation, making pages dynamic with
scripting, and more.

About the Authors
Ed Tittel, a 20-year veteran of the computer industry, ahs worked on over 20 For Dummies books.

Natanya Pitts is a writer, trainer, Web guru, and HTML instructor.

HTML 4 For Dummies, 4th Edition

by Ed Tittel & Natanya Pitts

Published by

Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022
WW. Wi | ey. com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-
4470. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-
mail:per ncoor di nator @vi | ey. com

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for
the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com and related
trade dress are trademarks or registered trademarks of Wiley Publishing, Inc., in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2002114830
ISBN: 0-7645-1995-6

Manufactured in the United States of America
10987654321

40/TR/QR/QT/IN

About the Authors

Ed Tittel is a full-time writer-trainer who manages a small gang of technoids at LANWTrights, his company

in Austin, TX. Ed has been writing for the trade press since 1986 and has worked on more than 100 books.
In addition to this title, Ed has worked on more than 30 books for Wiley, including Networking Windows NT
Server For Dummies, XML For Dummies, and Networking with NetWare For Dummies.

Ed teaches NetWorld + Interop and for private clients on demand. He also writes regularly for Certification
magazine, Cramsession.com, and a variety of Web sites. When he's not busy doing all that work stuff, Ed
likes to travel, shoot pool, spend time with his family, and wrestle with his indefatigable Labrador retriever,
Blackie.

You can contact Ed Tittel by e-mail atetittel @ anw. com

Natanya Pitts is a writer, trainer, and Web guru in Austin, TX. She has extensive experience in the
technical training realm, including overseeing the development of the materials for in-class and Web-
based training offerings. She also helped establish the Austin Community College Webmaster Certification
program and taught in the program for two years. Natanya has authored, coauthored, or contributed to
more than a dozen Web- and Internet-related titles, including XML For Dummies (1st, 2nd, and 3rd
Editions), The XML Black Book, and XML In Record Time. Natanya has also taught classes on HTML,
Dynamic HTML, and XML at several national conferences (including MacWorld, Networld + Interop, and
HP World), as well as at the NASA Ames Research Center.

You can contact Natanya Pitts at nat anya@ 0. com

Authors' Acknowledgments

Because this is the eighth iteration of HTML For Dummies, we'd like to start by thanking our many readers
for making this book a continued success. We'd also like to thank them and the Wiley editorial team for
the feedback that drives the continuing improvement of this book's content. Please, don't stop now - tell us
what you want to do with HTML, and what you do and don't like about this book.

Let me go on by thanking my sterling coauthor, Natanya Pitts, for her efforts on this revision. | am eternally
grateful for your ideas, your hard work, and your experience in reaching an audience of budding Web
experts.

Next, I'd like to thank the great teams at LANWrights and Wiley for their efforts on this title. At LANW rights,
my fervent thanks go to Mary Burmeister, for her services and the time spent on this book. Because Mary
herself revised quite a bit of copy, she gets 'nodding credit for her more substantive contributions, too.
Thanks Mary! At Wiley, | must thank Bob Woerner and Nicole Haims for their outstanding efforts, and
Barry Childs-Helton for his marvelous ways with our words. Other folks we need to thank include the folks
in Composition Services for their artful page layouts, and the Media Development team for their assistance
with the HTML For Dummies Web site on Dummies.com.

I'd like to thank and welcome my lovely wife, Dina Kutueva-Tittel, for signing up with me all the way from
Kyrgyzstan, and for making the big move from central Asia to central Texas. Welcome to my home, my
heart, and my house, honey! Finally, I'd like to thank my parents, Al and Ceil, for all the great things they
did for me. | must also thank my faithful sidekick, Blackie, who's always ready to pull me away from the
keyboard - sometimes literally - to explore the great outdoors.

- Ed Tittel

First and foremost I'd like to thank my coauthor, Ed Tittel, for giving me the opportunity to work on this
book again. It's been fun! In addition to being a great coauthor, you've been a great friend. This book
wouldn't have been possible without the editorial and managerial efforts of Mary Burmeister. Thank you so
much for keeping me on track and keeping me sane. Special thanks to my beloved husband, Robby, and
my beautiful daughter, Alanna. All things are easier because you are a part of my life. Thanks to my
parents, Charles and Swanya, for always believing in me and supporting me.

- Natanya Pitts

Publisher's Acknowledgments

We're proud of this book; please send us your comments through our online registration form located at
www. dunmi es. cont reqi ster/.

Some of the people who helped bring this book to market include the following:
Acquisitions, Editorial, and Media Development

Senior Project Editor:
Nicole Haims

Acquisitions Editor:
Bob Woerner

Senior Copy Editor:
Barry Childs-Helton

Technical Editor:
Matthew Haughey

Editorial Manager:
Leah Cameron

Permissions Editor:
Carmen Krikorian

Media Development Specialist:
Megan Decraene

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant:
Amanda Foxworth

Cartoons:
Rich Tennant
www. t he5t hwave. com

Production

Project Coordinator:
Dale White

Layout and Graphics:
Michael Kruzil

Kristin McMullan
Tiffany Muth

Proofreaders:

Tyler Connoley

John Greenough

Susan Moritz

TECHBOOKS Production Services

Indexer:
TECHBOOKS Production Services

Special Help

Diana Conover
Publishing and Editorial for Technology Dummies

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Andy Cummings

Editorial Director
Mary C. Corder

Publishing for Consumer Dummies

Vice President and Publisher
Diane Graves Steele

Acquisitions Director
Joyce Pepple

Composition Services

Vice President of Production Services
Gerry Fahey

Director of Composition Services
Debbie Stailey

Introduction

Overview

Welcome to the wild, wacky, and wonderful possibilities inherent on the World Wide Web, simply referred
to as the Web. In this book, we introduce you to the mysteries of the Hypertext Markup Language (HTML),
which is used to build Web pages, and initiate you into the still-select, but rapidly growing, community of
Web authors.

If you've tried to build your own Web pages before but found it too forbidding, now you can relax. If you can
dial a telephone or find your keys in the morning, you too can become an HTML author. (No kidding!)

When we first wrote this book, we took a straightforward approach to the basics of authoring documents
for the Web. In this edition, for the latest generation of Web page designers, we mix the best of old and
new approaches. As always, we keep the amount of technobabble to a minimum and stick with plain
English whenever possible. Besides plain talk about hypertext, HTML, and the Web, we include lots of
examples, plus tag-by-tag instructions to help you build your very own Web pages with minimum muss and
fuss. We also provide more examples about what to do with your Web pages once created, so you can
share them with the world. We also explain the differences between HTML 4 and XHTML, so you can
decide if you want to stick with the most widely used and popular Web markup language (HTML) or the
latest and greatest Web markup language (XHTML).

We also have a companion Web site for this book that contains HTML examples from the chapters in
usable form - plus a number of pointers to interesting widgets that you can use to embellish your own
documents and astound your friends.

About This Book

Think of this book as a friendly, approachable guide to taking up the tools of HTML and building readable,
attractive pages for the Web. Although HTML isn't hard to learn, it does pack a plethora of details. You
need to wrestle with these details some while you build your Web pages. Some sample topics you find in
this book include

m Designing and building Web pages

m Uploading and publishing Web pages for the world to see
m Creating interesting page layouts

m Testing and debugging your Web pages

Although, at first glance, building Web pages may seem to require years of arduous training, advanced
aesthetic capabilities, and ritual ablutions in ice-cold streams, take heart: It just ain't so. If you can tell
somebody how to drive across town to your house, you can certainly build a Web document that does
what you want it to. The purpose of this book isn't to turn you into a rocket scientist (or, for that matter, a
rocket scientist into a Web site). The purpose isto show you all the design and technical elements you
need to build a good-looking, readable Web page, and to give you the know-how and confidence to do it!

How to Use This Book

This book tells you how to use HTML 4 to get your page up and running on the World Wide Web. We tell you w
ideas and information to the whole online world - if that's what you want to do - and maybe have some high-tec

All HTML code appearsin monospaced type such as this:

<head><title>Wat's in a Title?</titl e></head>. ..

When you type HTML tags or other related information, be sure to copy the information exactly as you see it be
of the magic that makes HT ML work. Other than that, you find out how to marshal and manage the content tha
elements of HTML with your own work.

The margins of a book don't give us the same room as the vast reaches of cyberspace. Therefore, some long |
Resource Locators), may wrap to the next line after we present them here. Remember that your computer sho
typing that hunk of code, keep it as one line. Don't insert a hard return if you see one of these wrapped lines. W
line at a slash, or other appropriate character, (to imply 'but wait, there's more!') and slightly indenting the overe

http://ww. i nfocadabra. transyl vani a. com nexus/ pl exus/ | exus/ praxis/okay/this/is/.

HTML doesn't care if you type tag text in uppercase, lowercase, or both (except for character entities, also
of this book). To make your own work look like ours as much as possible, enter all HTML tag text in lowercase
reversal of earlier instructions. That it is! But the keepers of the eternal and ever-magnanimous standard of HT
so we changed our instructions to follow their lead. We may not make the rules, but we do know how to play th

http://www.infocadabra.transylvania.com/nexus/plexus/lexus/ praxis/okay/this/is/a/make-believe/URL/but/some/real/ ones/are/SERIOUSLY/long.html

Three Presumptuous Assumptions

They say that making assumptions makes a fool out of the person who makes them and the person who is
subject to those assumptions (and just who are They, anyway? We assume we know, but . . . never mind).
Even so, practicality demands that we make a few assumptions about you, our gentle reader:

= You can turn your computer on and off.
m You know how to use a mouse and a keyboard.
= You want to build your own Web pages for fun, for profit, or for your job.

In addition, we assume you already have a working connection to the Internet, and one of the many fine
Web browsers available by hook, by crook, or by download from that same Internet. You don’t need to be
a master logician or a wizard in the arcane arts of programming, nor do you need a Ph.D. in computer
science. You don’t even need a detailed sense of what'’s going on in the innards of your computer to deal
with the material in this book.

If you can write a sentence and know the difference between a heading and a paragraph, you're better off
than nine out of ten playground bullies — and you can build and publish your own documents on the Web.
If you have an active imagination and the ability to communicate what's important to you, even better —
you've already mastered the key ingredients necessary to build useful, attractive Web pages. The rest
consists of details, and we help you with those!

How This Book Is Organized

This book contains seven major parts, arranged like Russian Matrioshka,otherwise known as nesting
dolls: All these parts contain three or more chapters, and each chapter contains several modular sections.
Any time you need help or information, pick up the book and start anywhere you like, or use the Table of
Contents or Index to locate specific topics or keywords.

Here is a breakdown of the parts and what you find in each one.

Part I: Meeting HTML in Its Natural Environment

This part sets the stage and includes an overview of and introduction to the Web and the software that
people use to mine its treasures. This section also explains how the Web works, including the HTML to
which this book is devoted, and the server-side software and services that deliver information to end-users
(as all of us are when we're not doing battle with the logical innards of our systems).

HTML documents, also called Web pages, are the fundamental units of information organization and
delivery on the Web. Here, you also discover what HTML is about and how hypertext can enrich ordinary
text. Next, you take a walk on the Web side and build your very first HTML document.

Part Il: Getting Started with HTML

HTML mixes ordinary text with special strings of characters, called markup, used to instruct browsers how
to display HTML documents. In this part of the book, you find out about markup in general and HTML in
particular. We start with a fascinating discussion of HTML document organization and structure (well . . .
we think it's fascinating, and hope you do, too). Next, we tackle how the hyperlinks that put the H into
HTML work. After that we discuss how you can find and use graphical images in your Web pages, and
make some fancy formatting maneuvers to spruce up those pages.

Throughout this part of the book, we include discussion of HT ML markup elements (also known as tags)
and how they work. Thus, at the same time you learn how to lay out and design Web pages, you'll also
learn about the not-so-mysterious markup that really makes HT ML work.

By the time you finish Part Il, expect to have a good overall idea of what HTML is, what it can do, and how
you can use it yourself.

Part Ill: Taking HTML to the Next Level

Part Ill takes the same approach used in Part Il and kicks it up anotch. That is, it covers the ins and outs of
more complex collections of markup - specifically tables, frames, and forms - and explores and explains
them in detail, with lots of examples, to help you design and build commercial-grade HTML documents.
You can get started working with related HT ML tag syntax and structures that you need to know so you
can build complex Web pages. By the time you knock off this section, you'll be ready to create some pretty
and sophisticated Web pages of your own.

Part IV: Extending HTML with Other Technologies

By itself, HTML is good at handling text and graphics. But HTML's not terribly good at snazzing up the way
such text and graphics look when they're on display, and HTML really can't do too much by itself. Because
modern, savwy Web designers want to build interactive, dynamic Web pages, other add-ins and
technologies help provide such characteristics within an HTML framework.

Thus, in this part of the book you learn about the Cascading Style Sheets (CSS) markup language that
can really add color and pizzazz to Web pages. You also learn about scripting languages that enable Web
pages to interact with users in interesting ways, and that also provide ways to respond to user input or
actions and to grab and massage data along the way. Next, we cover what's involved in adding audio,

video, or animations to your Web pages to bring them to life, as we explore various multimedia options that
work well on the Web. After that, we explore various ways you can grab data from a database and import it
into a Web page, and explain how HTML relates to other, more modern markup languages like the
Extensible Markup Language (XML) and a recasting of HTML into XML form called the Extensible
Hypertext Markup Language (XHTML).

Throughout this part of the book, we combine examples, advice, and details to help you see and
understand how these extra components can enhance and improve your Web site's capabilities - and your
users' experiences when visiting your pages.

Part V: From Web Page to Web Site

In this part, we expand your view on what's involved in working with HTML. By themselves, Web pages
provide the focus for most real activity and development work when using HTML. But without some sense
of how the sets of interlinked and interlocking Web pages known as Web sites work together, or a notion
of how to design and manage collections of Web pages on a bigger scale, we wouldn't really be showing
you how to make the most of HTML.

Thus, in this part of the book we explain how to manage collections of Web pages and work with entire
Web sites. We begin this adventure with a discussion of typical and useful HTML tools, and exploring the
contents of a typical Web professional's toolbox. We also explain what's involved in setting up a Web site
online, and in arranging to share the fruits of your labors with the world. Finally, we explain what's involved
in designing an entire Web site so that all its parts work together well, and so that users can understand
how to find their way around and get things done within your HTML documents. As always, we provide
ample examples and illustrations to show you what to do, and how to make things work.

Part VI: The Part of Tens

In the concluding part of the book, we sum up and distill the very essence of what you now know about the
mystic secrets of HTML. Here, you review how to catch and kill potential bugs and errors in your pages
before anybody else sees them, get a second chance to review top do's and don'ts for HTML markup, and
can peruse our compendium of top HTML resources available online.

Part VII: Appendixes

The last part of this book ends with a set of appendixes designed to sum up and further expand on the
book's contents. Appendix A is an alphabetical list of HTML tags, designed for easy access and reference.
Appendix B contains a set of tables that document the various kinds of character codes that you can use to
cause all kinds of special and interesting characters to appear within your Web pages. And finally,
Appendix C provides a Glossary for the technical terms that appear in this book.

By the time you make it through all the materials in the book, you'll be pretty well equipped to build your
own Web documents and perhaps even ready to roll out your own Web site!

Icons Used in This Book

This icon signals technical details that are informative and interesting, but not critical to
writing HTML. Skip these if you want (but please, come back and read them later).

This icon flags useful information that makes HTML markup, Web page design, or other important
stuff even less complicated than you feared it might be.

This icon points out information you shouldn't pass by - don't overlook these gentle
reminders (the life, sanity, or page you save could be your own).

Be cautious when you see this icon. It warns you of things you shouldn't do; consequences can
be severe if you ignore the accompanying bit of wisdom.

Text marked with this icon contains information about something that can be found on this
book's companion Web site. You can find all the code examples in this book, for starters. Simply visit the
Extras section of Dummies.com (www. dunmi es. com ext r as) and click the link for this book. We also
use this icon to point out great Web resources we think you'll find useful.

The information highlighted with this icon gives best practices - advice that we wish
we'd had when we first started out! The techniques here can save you time and money on migraine
medication.

Whereto Go from Here

This is the part where you pick a direction and hit the road! HTML 4 For Dummies, 4th Edition, is a lot like
the parable of the six blind men and the elephant: Where you start out doesn't matter; you'll look at lots of
different parts as you prepare yourself to build your own Web pages - and each part has a distinctive
nature, but the whole is something else again. Don't worry. You can handle it. Who caresif anybody else
thinks you're just goofing around? We know you're getting ready to have the time of your life.

Enjoy!

Part |I: Meeting HTML in Its Natural Environment

In This Part:

Chapter 1: The Least You Need to Know about HTML and the Web
Chapter 2: HTML at Work on the Web

Chapter 3: Creating Your First HTML Page

In this part. ..

This part introduces you to the Hypertext Markup Language, a.k.a. HTML. It explains the basic principles
behind the way HT ML works, including the markup to which this book is primarily devoted. It covers how
HTML makes Web pages work, surveys how full-scale Web sites work, and offers pointers for taking best
advantage of HTML's many capabilities. We conclude this part with some thrilling hands-on exposure to
HTML, as you design, build, save, and view your very own first Web page.

Chapter 1: The Least You Need to Know about HTML
and the Web

Overview
In This Chapter
m Creating HTML in text files
m Serving and browsing Web pages
m Understanding links and URLs
m Understanding basic HT ML syntax

Welcome to the wonderful world of the Web and HTML. With just a little bit of knowledge, some practice,
and, of course, something to say, you too can build your own little piece of cyberspace or expand on work
you've already done. This book is your down-and-dirty guide to putting together your first Web page,
sprucing up an existing Web page, or creating complex and exciting pages that integrate intricate designs,
multimedia, scripting, and more.

The best way to get started working with HTML is to jump right in, so that's what this chapter does: It brings
you up to speed on the basics of how HT ML works behind the scenes of Web pages, introducing you to
HTML's building blocks. When you're done here, you'll have a good idea of just how HT ML works so you
can start creating Web pages right away.

Introducing Web Pages in Their Natural Habitat
Web pages can contain many different kinds of content:

m Text

m Graphics

m Forms

m Audio and video files

m Interactive games

And that's just a partial list. Browse the Web for just a little while, and you'll come across a veritable
smorgasbord of information and content displayed in various ways. And although every Web site is
different, each has one thing in common: Hypertext Markup Language (HTML).

That's right, no matter what information a Web page may contain, every single Web page is created using
HTML. Consider HTML to be the mortar that creates a Web page's structure; the graphics, content, and
other information are the bricks. But what exactly is HTML and how does it work? Read on to find out.

Using hypertext to add structure to Web pages

Web pages are nothing more than text documents. In fact, that's what makes the Web work as well as it

does. Text is the universal language of computers, which means that any text file (including a Web page)
that you create on a Windows computer works equally well on a system running the Mac OS, Linux, Unix,
or any other operating system.

Okay, so Web pages aren't merelytext documents. They're documents made with text of a special,
attention-deprived, sugar-loaded kind. HTML is a collection of instructions you include along with your
content in a plain-text file that specifies how your page should look and behave. If this doesn't make sense
to you right now - well, it will.

Hypertext or not, a Web page's status as a text file means you can create and edit it in any
application that creates plain text (such as Notepad or SimpleText). In fact, when you're getting started with
HTML, a text editor is the best tool to start with. Just break out Notepad, and you're ready to go. There are,
of course, a wide variety of software tools with fancy options and applications (which we discuss in Chapter
16) designed to help you create Web pages, but essentially, they generate text files just as plain-text
editors do.

Web browsers were created specifically for the purpose of reading HTML instructions and displaying the
resulting page accordingly. For example, take a look at the Web page shown in Figure 1-1 and make a
quick mental list of everything you see.

3 “rek® o pmaky, thers i w ool
Foenan d el of oper 1 wieetal, o ki g

v« g TR

+ S

& Temorami =]

2] Dase =4 My Cimpartar
Figure 1-1: This Web page has several different components.

The components on this page include an image, a heading that describes the information on the page, a
paragraph of text about red wine, and a list of common varietals. Notice, however, that different
components of the page have different formatting. The heading at the top of the page is larger than the
text in the paragraph, and the items in the list have bullet points before them. The browser knows to
display these different components of the page in specific ways thanks to the HTML, which looks like

Listing 1-1.

Listing 1-1: Sample HTML Markup

<htm >
<head>
<title>Wne Varietals</title>
</ head>

<body>
<hl><ing src="red_grapes.jpg" w dth="75" hei ght="100"
al t="Red Grapes" align="m ddl e" hspace="5">
Under st anding Red Wne Varietals

</ hl>
<p>Al t hough wi nes tend to be generically categorized as
either "white" or "red,"” inreality, there is a

collection of wine varietals each with its own
di sti ngui shing characteristics. The red category
i ncl udes a robust collection of over 20 varietals,
i ncl udi ng:
</ p>

Barbera
Brunello
<l i >Cabernet Franc
<l i >Cabernet Sauvi gnhon</Ii >
Carignan
Carnmenere
Char bono</1i >
Dolcetto</Ili>
Gamay</1i>
Grenache</I|i >
Mal brec</Ili>
Merlot</Ili>

Mourvedre</I|i>
Neebi ol o</Ii >
Petite Sirah</Ili>
Pinot Noir
Sangi ovese</|i >
Syrah</Ili>
Tenpranillo
Zi nfandel </ | i >
</ ul >
</ body>
</htnm >

The text enclosed in the less-than and greater-than signs (< >) isthe HTML (often referred to as the
markup). For example, the <p>. . . </ p> markup identifies the text about red varietals as a paragraph,
and the . .. </ i > markup identifies each item in the list of varietals. And that's really all there is to
it. You embed the markup in a text file along with your text to let the browser know how to display your
Web page.

We delve into the basic syntax of markup a bit later in the chapter in the section 'Introducing HT ML
Syntax and Rules.' For now, what's important is that you understand that markup lives inside of a text file
along with your content to give instructions to a browser.

Using aserver to host your pages

Your HTML pages wouldn't be much good if you couldn't share them with the rest of the world, and Web
servers make that possible. A Web server is a computer that's connected to the Internet, has Web server
software installed, and can respond to requests for particular pages from Web browsers.

Just about any computer can be a Web server, including your home computer; however,
Web servers are generally computers dedicated to the task. Although you don't have to be an Internet or
computer guru to put your Web pages out so anyone can access them, you do have to find a Web server
for your Web pages. If you're building pages for a company Web site, you may already have a Web server
to put them on; you just have to ask your IT guru for the information. However, if you're starting a new site
for fun or for profit, you'll need to find a host for your pages.

Web hosting is a big business these days, so finding an inexpensive host is easy. We lay out all of the
details on figuring out what your hosting needs are and finding the perfect provider in Chapter 17.

Understanding basic browser technology

The last piece of the Web puzzle is a Web browser. Web browsers take instructions written in HTML and
use these instructions to display a Web page's content on your screen. Think of it this way: Microsoft Word
documents are best viewed using Microsoft Word. You can use other word-processing programs (or even
different versions of Word) to view Word documents, and for the most part, the documents look pretty
much the same. This concept applies to HTML documents. You should always write your HT ML with the
idea that people will be viewing the content using a Web browser. Just remember that there's more than
one kind of browser out there, and each one comes in several versions.

Usually, Web browsers request and display Web pages available via the Internet from a Web server, but
you can also display HTML pages you've saved on your own computer before making them available on a
Web server on the Internet. When you're developing your own HTML pages, you view these pages (called
local pages), in your browser. You can use local pages to get a good idea of what people see when the
page goes live on the Internet.

The most important thing to remember about Web browsers is that each browser interprets

HTML in its own way. The same HTML doesn't look exactly the same from one browser to another. When
you're working with basic HTML, the variances arent significant, but when you start integrating other
elements (such as scripting and multimedia), things get a little hairy. The bottom line is that the browser
has the ultimate control over how your Web pages look, so you should concentrate on creating solid
HTML and let the browser do the rest.

A bevy of browsers

The Web world is full of browsers of many shapes and sizes - or rather versions and feature-sets. The
two most popular browsers available today are Microsoft Internet Explorer and Netscape Navigator
(sometimes called Mozilla), but there are others like Opera and Amaya in use as well. As a user, you
have probably chosen a browser you like best, but as an HT ML developer you have to think beyond
your own browser needs. Every user has his or her own browser preference and browser settings.

To make things even more complicated (or challenging if you choose to see the glass as half-full),
each browser renders your HT ML just a bit differently. In addition, every browser handles JavaScript,
multimedia, style sheets, and other HTML add-ins just a bit differently. When you throw in different
operating systems (Mac or Windows), things get really fun. Most of the time, the differencesin the way
two browsers display the same HTML will be negligible, but other times, a particular combination of
HTML, text, and media may bring a particular browser to its knees.

The bottom line is as you begin to work more with HTML, you'll need to test your pages on as many
different browsers as you can manage. You should install two or three different browsers on your own
system (we recommend the latest versions of Internet Explorer, Netscape, and Opera) for testing
purposes. To access a fairly complete list of the browser's available, visit Yahoo!'s Web browser
category (htt p: // di r. yahoo. com Conput ersand | nternet/ Software/lnternet/

Wrld Wde Web/Browsers/).

InChapter 3, you find out how to use a Web browser to view a local copy of your first Web page. You
can choose from one of several Web browsers to view your pages, but we suggest that you start with the
browser you use now to surf the Web. That way you don't have to get used to a new browser andget
comfortable with HTML all at the same time.

Most people view the Web with graphical browsers (such as Netscape or Internet
Explorer) that display images, text formatting, complex layouts, and more. However, some people prefer to
use text-only browsers (such as Lynx) because they're visually impaired and can't take advantage of a
graphical display or because they like a lean, mean Web server that just displays content. Even if you
choose to view the Web with a graphical browser, you should always be sensitive to the fact that at least
some of the viewers of your page will only see your page in text. Chapter 18 includes more information on
how to make your Web page accessible to everyone regardless of the type of browser they choose to use.

Understanding how hyperlinks make the Web the Web

The World Wide Web comes by its name honestly. It's quite literally a Web of HTML pages hosted on
Web servers around the world, connected in a million different ways. Of course, those connections aren't
made with spider webbing, but are instead created by hyperlinks that connect one page to the next.
Without those links (as they're called for short), the Web could still exist, but rather than being a collection
of interrelated pages that users can easily traverse, it would just be a group of standalone pages.

In fact, a healthy portion of the Web's value is its ability to link to pages and other resources (such as
images, downloadable files, and media presentations) on the same Web site or on another one. For
example, FirstGov (wwv. fi r st gov. gov) is a gatewayWeb site - its sole function is to provide access to
other Web sites. If you aren't sure which government agency handles first-time loans for homebuyers, or
want to know how to arrange a tour of the Capital, you can visit this site (shown in Figure 1-2) to find out.

http://dir.yahoo.com/Computersand_Internet/Software/Internet/

Flricay - Yous Flnt Clak & e U5 Gevsiimanal - Baswmal Babwin st [plissy

Tde L8 View Faovesiion Teals liely

et = -G S Bk Cifewie By Ly - - ®H
e 3

wry T ¥ W oW

|
Figure 1-2: FirstGov is a gateway that uses hyperlinks to help visitors find government information on
the Web.

Introducing Internet protocols

Interactions between browsers and servers are made possible by a set of computer-communication
instructions called the Hyper-text Transfer Protocol (HTTP) protocol. This protocol defines all the rules
about how browsers should request Web pages and how Web servers should respond to those
requests.

HTTP isn't the only protocol at work on the Internet. The Simple Mail Transfer Protocol (SMTP) and
Post Office Protocol (POP) protocols make e-mail exchange possible, and the File Transfer Protocol
(FTP) allows you to upload, download, move, copy, and delete files and folders across the Internet.
The good news is that Web browsers and servers do all of the HTTP work for you, so you don't have
to do anything more than put your pages on a server or type a Web address into a browser to take
advantage of this protocol.

If you're interested in how HTTP works, we recommend Webmonkey's article 'HTTP Trans-actions
and You' at

http://hotwired.|lycos.coml webnonkey/ geekt al k/ 97/ 06/ i ndex4a. ht m

for a good overview.

http://hotwired.lycos.com/ webmonkey/geektalk/97/06/index4a.html

Introducing URLs

The Web is made up of milions of resources, each of them linkable. Knowing a page's (or some other
resource's) exact location is the key to creating a successful hyperlink to it. Also, without the exact address
(called a Uniform Resource Locator or URL), you can't use the Address bar in a Web browser to visit a
Web site or Web page directly.

URLSs provide the standard addressing system for resources on the Web. Each resource
(whether Web page, site, or individual file) has a unique URL. URLs work alot like your postal address.
For example, your address includes some general information, such as the state and city you live in, but
then it narrows to specify what street you live on, and then what building, and maybe which apartment in
that building. And if that isn't specific enough, when you add your name to the address, you have a very
precise definition of to whom a piece of mail is supposed to go.

A URL uses a similar approach to zero in on its destination: It begins with generic information and includes
increasingly specific information until it points to a single, unique file on the Web. Figure 1-3 identifies the
components of a URL.

Domain Filenama
]

|] |
http:/fwww.sun.com/developers/evangcentral /bica.html

B ,
Protoco Path

Figure 1-3: The components of a URL help it define the exact location of a single file on the Web.

Each component of a URL plays a particular role in defining the location of a Web page or other Web
resource:

m Protocol: This portion of the link specifies which protocol the browser should follow when it requests
the file. The protocol for Web pagesis htt p: // (the familiar precursor to most Web URLS).

m Domain: This part of the link points to the general Web site (such as ww. sun. con) where the file
resides. A single domain may host a few files (as does a personal Web site) or millions (as does a
corporate site like www. sun. com.

m Path: This part of the link names the sequence of folders through which you have to navigate before
you get to a particular file. For example, to get to a file in the evangcent r al folder that resides in the
devel oper s folder, youwould use the / devel oper s/ evangcentral / path.

m Filename: The name of the file specifies exactly which file in a directory path the browser should
access.

The URL shown in Figure 1-3 points to the Sun domain and offers a path that leads to a specific file
namedbi os. ht m :

http://ww. sun. conf devel oper s/ evangcentral / bi os. ht n

Chapter 5 provides the complete details on how you use HTML and URLSs to add hyperlinks to your
Web pages, and Chapter 17 discusses how to obtain a URL for your own Web site after you're ready
move it to a Web server.

http://
http://www.sun.com/developers/evangcentral/bios.html

Introducing HTML Syntax and Rules

All things considered, HTML is a very straightforward language for describing the contents of a Web page. Its
components are easy to use - and when you know how to use a little bit of HTML, the rest follows naturally. HT
has three main components:

m Elements: Identify different pieces and parts of an HTML page.

m Attributes: Provide additional information about an instance of an element.

m Entities: Represent non-ASCII text characters such as copyright symbols (©) and accented letters (E). (Se
Appendix B for more detalils.)

Every bit of HTML markup that you used to describe a Web page's content includes some combination of elem
attributes, and entities.

The following sections cover the basic form and syntax for elements, attributes, and entities. All the chapte
Parts Il and Ill of the book include details on how to use elements and attributes to do the following:

m Describe particular kinds of text (such as paragraphs or tables)
m Create a particular effect on the page (such as changing a font style)

m Add images and links to a page

Elements

Elements are at the core of HTML, and you use them to describe every piece of text on your page. Elements ar
made up of tags,and an element may have either a start and end tag, or just a start tag. Here's how you know v
kind of tag or tags to use:

m Elements that describe content use a tag pair: Content like paragraphs, headings, tables, and lists alwe
use a tag pair that follows the same syntax

<tag>...</tag>

For example, the red wine varietal page in Listing 1-1 used the paragraph element (<p>) to describe a
paragraph:

<p>Al t hough wines tend to be generically categorized as either "white"
or "red," inreality, there is a collection of wine varietals each
its own distinguishing characteristics. The red category includes a
robust collection of over 20 varietals, including:

</ p>

The paragraph element uses a tag pair (that is, two tags, one at the start and the other at the
to surround the text of the paragraph. Think of the start tag as an on switch that says to the browser, The
paragraph begins here' - and the end tag as an off switch that says, 'The paragraph ends here.'

m Elements that insert something into the page use one tag: Content like an image or a line break alway
uses a single tag:

<t ag>

Listing 1-1 also uses the image element (<i ng>) to include an image on the page:

<inmg src="red_grapes.jpg" wdth="75" height="100" alt="Red G apes"

align="m ddl e" hspace="5">

The<i ng> element uses a single tag (called an empty element) to reference animage. When the browser
displays the page, it replaces the <i ng> element with the file that it points to (it uses an attribute to do the
pointing, which we discuss next).

You can't go around making up your own HTML elements. The elements that are legal in HTML forr
very specific set - if you try to use elements that aren't part of the HTML set, every browser in the universe will ic
them. The actual set of elements you can use is defined in the HTML 4.01 specification, discussed later in this
chapter.

Many page structures (like the list of red wines you saw earlier) use combinations of elements to describe part «
your page. In the case of a bulleted list, for example, the element specifies that the list is unordered (bulle
and<l| i > elements mark each item in the list.

When you combine elements by this method (called nesting), be sure you close the inside element comp
before you close the outside element:

Barbera</I|i>
Brunello
</ ul >

Think of your elements as suitcases that fit neatly within one another, and you can't go wrong.

Attributes

Attributes allow variety in the way an element describes content or works on the page. Think of attributes as
extending an element so you can use it differently depending on the circumstances. For example, the <i ng>
element uses the sr ¢ attribute to specify the location of the image you want to include at a particular spot on y¢

page:

<i mgsrc="red_grapes.jpg" w dth="75" hei ght="100" alt="Red G apes”
al i gn="mni ddl e" hspace="5">

In this bit of HTML, the <i ng> element itself is a general flag to the browser that you want to include an image;
sr ¢ attribute provides the specifics on the image you want to include, r ed_gr apes. j pg in this instance. Othe
attributes (such as wi dt h,hei ght ,al i gn, and hspace) provide information about how to display the image, ¢
theal t attribute provides a text alternative to the image if the browser doesn't display the image.

Chapter 6 discusses the <i mg> element and its attributes in detail.

You always include attributes within the start tag of the element you want them to go with - after the element na
but before the closing greater-than sign, like this:

<tagattribute="val ue" attribute="val ue">

Attribute values must always appear in quotation marks, but you can include the attributes and th
values in any order within the start tag.

Every HTML element has a collection of attributes that can be used with it, and you can't mix and match attribut
and elements. Some attributes can take any text as a value because the value could be anything, like the locat
an image or a page you want to link to. Others have a specific list of values the attribute can take, such as your
options for aligning text in a table cell. The HTML 4.01 specification defines exactly which attributes you can use
any given element and which values (if explicitly defined) each attribute can take.

Each chapter in Parts Il and Il of the book covers which attributes you can use with each HTML element.

Entities

Although text makes the Web possible, it does have its limitations. There are characters that basic ASCII text d¢
include, such as trademark symbols, fractions, and accented characters. For example, the list of white wine var
shown in Figure 1-4 includes two accented e characters (€) and two u characters with umlauts (0).

A Wine Varintals - Microsofl Internot Explorer BEE
| Flle Edit View Favorites Taoks Help [% |
|| eaBack = = - 3 [Y anFm »

El
White Varietals

= Chardocminy

= Chenin Blanc
Fumé Blan:
Jewirztrnmines
Onitrer Veltlimer
Musinne
Muscat

Pinat Blanc
Pinot Onis
Feising
Smrvignon Blanc
Jémillon
Trebbiann

Viogme

R EEE RN

|
&1 Dona [[IS My Computer i
Figure 1-4: ASCIl test can't represent all text characters so HT ML entities do instead.

Because ASCII text doesn't include either the accented e or the umlauted u, the HTML uses entities to represet
them instead. When the browser comes across the entity, it replaces it with the character it references. Every e
begins with an ampersand (&) and ends with a semicolon (;). The following markup shows the entities in bold:

<htm >
<head>
<title>Wne Varietals</title>
</ head>

<body bgcol or =" #FFFFFF" >
<h2>White Vari etal s</ h2>

<l'i> Chardonnay
Cheni n Bl anc
Fum&eacut e; Bl anc</I|i>
Gew&uumnl ;rztram ner</I|i>
G &uum ;ner Veltliner
Marsanne</|i >
Muscat
Pi not Bl anc
Pinot Gis</Ili>
Reisling
<l i >Sauvi gnon Bl anc</1i >
Sémllon
<l'i >Trebbi ano</1i >
Viognie

</ ul >

</ body>

</htm >

The entity that represents the e with the acute accent is &eacut e; and the entity that represents the umlauted
&uum ;.

As you might expect, the HTML specification lays out exactly which entity you use to replace every non-AS
character the specification supports. Appendix B includes a complete list of characters and the entities you use
represent them in your HT ML.

In addition to non-ASCII characters, you also use entities to represent the characters that HTML uses to differer
itself from the text around it:

m |less-than sign (<):&l t;
m greater-than sign (>):> ;
m ampersand (&):&anp;

As you may have noticed, the < and > signs are used all the time as part of the markup, but thes:
symbols are instructions to the browser and won't actually show up on the page. So if you ever need these sy
to appear on the Web page, you have to include the entities for them in your page, like this:

<p>The paragraph el enent identifies sone text as a paragraph: </ p>
<p>< p> This is a paragraph. & t;/p> </ p>

In the first line of the following markup, we use tags to describe a simple paragraph. The second line shows ho
use entities to describe the < and > symbols. Figure 1-5 shows how the browser converts these entities to char:

to show the results of your markup in a browser window.

'! Umtiitod Documend . Microseft Intormet Explonor [[=]
| Flle Edit View Favorites Tools Welp [& |
| duBack = = - 3 [5) 4 Sewch [afFavoite: 2

=

The paragraph element idemlifis s some 1251 88 8 parygnph

<p>This 23 & paragraph <fp>

e R J
&7 Dose [[& My Computer =
Figure 1-5: Always use entities when you want to display a less-than sign, greater-than sign, or ampersanc
the browser window.

The HTML 4.01 Specification

The HTML 4.01 specification is the rulebook of HTML - it tells you exactly which elements you can use,
which attributes go with those elements, and how you use elements in combinations to create lists, forms,
tables frames, and other page structures.

The HTML specification uses Document Type Definitions (DTDs) written in the Standard Generalized
Markup Language (SGML) - the granddaddy of all markup - to define the details of HTML. In its earlier
versions, HTML used elements for formatting; over time, developers realized that formatting needed its
own language (now called Cascading Style Sheets, or CSS) and that HTML elements should just describe
a page's structure. That's how the three flavors of HTML that the specification includes came to be:

m HTML Transitional: A version of HTML that includes elements to describe font faces and page
colors. HTML Transitional represents a version that accounts for formatting elements in older versions
of HTML. Formatting elements in HTML Transitional are deprecated (considered obsolete) because
the W3C would like to see HTML developers move away from them and to a combination of HTML
Strict and CSS.

m HTML Strict: A version of HTML that doesn't include any elements that describe formatting. This
version is designed to work with CSS driving the page formatting.

The CSS-with-HTML Strict approach is an ambitious way to build Web pages, but in practice it
has its pros and cons. CSS provides more control over your page formatting, but creating style sheets
that work well in all browsers can be tricky. Chapter 11 discusses style sheets and the issues around
using them in more detail.

m HTML Frameset: A version of HTML that includes frames, which is markup that allows you to display
more than one Web page or resource at a time in the same browser window.

All Web browsers support all elementsin HTML Transitional; thus you can choose to use elements from it
or stick with HTML Strict instead. If you use frames, you'll technically be working with HTML Frameset, but
all of the elements work in the same way.

In this book, we cover all HTML tags in all versions, lumping them into a single category (aptly called
HTML) because all real-world Web browsers support these three flavors - and they're extremely unlikely to
withdraw support for HTML Transitional or HTML Frameset any time soon. What this means is you have a
large assortment of elements to choose from when you create your HTML, so you can build the best
possible Web page.

Of course, you'll find all the details of the HTML elements, their attributes, and their usage here in this
very book - so you don't have to struggle with reading DTDs or arcane technical specifications if you want
tolearn HTML. Even so, if you ever want to go to the source, it's good to know where the horse's mouth is
and what it says. You can review the HTML 4.01 specification and the HTML DTDs at
www. W3. org/ TR/ ht mi 4.

Chapter 2: HTML at Work on the Web

Overview
In This Chapter
m Understanding how others are using HT ML
m Deciding what you want your Web page to do for you
m Thinking about your page design and features
m Planning for future expansion

HTML is rather straightforward, and it's pretty simple to create a tag or two and throw some text in - which
is great if you want to create a one-line Web page. However, there's much more to building a Web page
than just creating a couple of tags and adding some text. Even the simplest Web page is a well-planned
collection of elements and text with images thrown in for good measure.

In the end, your goal is to use HTML to put information on the Web. Whether you want to sell a product,
tell potential clients more about your services, or share Christmas pictures, be sure you have a clear idea
of what you want HTML to do for you. When you have that firmly in mind, it's just a matter of using the right
HTML to get the result you're looking for (which is what the majority of this book is about, of course).

This chapter looks at what others are doing with HTML on the Web - it may spark your imagination if you
don't have a Web page goal in mind just yet, or help you refine your ideas if you do. Then we take a look
at how you might want to use different elements such as images, multimedia, and even (gasp)
programming in your page so you can bring your Web-page plan closer to its final form.

You don't have to know exactly how your page will behave or how it will look before you start creating
HTML. In fact, you'll soon discover that Web pages are constantly evolving entities that take on a life of
their own. Even so, if you have a basic plan in mind, you'll be able to better direct your HTML work and
focus first on those elements and attributes that you need most. You can pick up other elements as your
page requires.

What Others Are Doing with HTML

Spend a few moments surfing the Web and you'll quickly see how others are using HTML. From news
sites to online stores to personal home pages, HTML helps people around the world share information of
incalculable variety.

Building Web pages and Web sites

At its heart, the Web is a collection of Web pages, all built with HTML. Although Web technologies have
greatly evolved to include complex programming, streaming multimedia, and intricate interfaces, every
Web site starts with a single Web page, and every Web page starts with HTML. The complexity of a Web
page has everything to do with both its content as well as the message its creator needs to convey. (Often,
these are two sides of the same coin.)

For example, the Impact Online Web page (Www. i npact onl i ne. com), shown in Figure 2-1, serves as a
simple marketing tool for a consultant to let potential clients know what services he offers.

ru_ilﬁ

..'!'.':!!'E"'.'ﬂzﬂ e .!;Ih-:,-j-ﬂvjﬁ_—_:; e 2
and L e DT T et s
.lgpﬂc'l' i
ezlceze
S e

We're Creating Our O Word!

BNEACT Colac o & o serwie. I yom o od oot
Ugratee [rromme? | it mriabet
Wiws hoon wed

3, wsbogased roicns,
fockrg ronfuct e

¥R W

e Gt o

E‘Jm [T et
Figure 2-1: The Impact Online Web page is simple but direct - the best way to present its creator's

message.

In contrast, the World Wide Web Consortium (W3C) home page (ww. w3. or g), shown in Figure 2-2, is
much more complex and contains more content (hence more HTML) because the page serves as a portal
to the vast resources of the W3C.

B Thos '8 1 Wi Wi o s . M | st [i

fie 8 View [erssiss Trals liely
el = - 1 N Blemk e B |- - bW - o] WH
L] CH e ——p— Co

W3C daiieiiibintis

Lending vhe Web ro fiv Full Poreniial..

At | Torkosoe]l Hepocts | Bite Endex | Hew Viditwow | Abawt WA | Jaim WIT

Tha Waedd Wiiks Wb oo | aibai gk s o biede ot i ecoanioas, padibie, sefren, and

ad ke T pint, COcEEERECE, CouEELral i, i Collzrkc

User Agent Aceessibility Guoidelines Cunogle
Become g WaC I‘rlll;unl.ﬂl
Fecommendation o

WD e pleazed o srenourz e adrassemart 0 2o WU

Figure 2-2: The W3C home page is complex and robust; it helps visitors access the hundreds of other
pages on the W3C site.

Even though these two pages are vastly different, they use the same collection of HTML elements and
attributes to make content appear in a Web browser. The W3C page has more markup and may use
different HTML constructs (such as complex tables) than the Impact Online page does. In the end, they're
both just Web pages built with HTML.

If you're thinking that you have to do something different with your HT ML to build a Web site,
think again. A Web site is nothing more than a collection of Web pages. You'll most likely use hyperlinks
(discussed in detail in Chapter 5) to connect pages so visitors can easily navigate your site, but all you're
really doing is connecting several pages into a cohesive collection of related information.

With the right tools, a hosting provider, and a good interface, you can grow a single Web page into a
larger Web site. Check out Chapters 16 through 18 in Part V of this book for the basics.

Creating programming- and database-driven sites

Many Web sites these days go beyond plain HTML to include programming code that makes the sites
interactive and responsive to individual user needs and preferences. For example, when you visit an online
store and add items to your shopping cart, the Web pages you see are different from the ones other
visitors see. Each visitor's shopping cart is unique; everyone's view of the shopping cart in a Web browser
is unigue.

HTML is designed only to help you display information. If you want that information to provide a smart
response for different viewers (such as varying the display automatically to fit the person viewing it), you'll
need some other technologies in addition to HTML.

For example, sites that offer advanced features - such as shopping carts, bill payment, customized news,
and personalized displays - use both programming code and databases to make these features work.

Don't let the words programming and database intimidate you. Neither is required to put together a solid
Web site of well-designed and robust pages. There are entire Web sites that meet their goals beautifully
without using a lick of programming code (the W3C is a great example). Fortunately, if you find that the
only way to meet your page's goals is with programming (selling products online is a typical example), the
Web is chock-full of resources to help you.

Chapters 10,12, and 14 look more closely at what it takes to add programming and database
functionality to your Web page or site.

Deciding What You Want to Use HTML For

You've looked around the Web a bit and know what others are dong with their pages, and you have an
idea of what you want your page to do, but now it's time to solidify that idea into a more concrete plan.
(Okay, we admit that your plan will probably change along the way, but you have to start somewhere.)

To help formulate that plan, answer the four questions that head the upcoming sections as best you can
now; revisit them from time to time as your Web page evolves. You can consult the resulting design for
your page as you write your HTML.

What do you want your pageto do for you?

Why are you building a Web page? Is it for fun, for profit, for some of both? The most important thing you
need to know about your page is what you want it to do for you. Everything else about your page, from the
way it looks to the information and HTML you use to build it, grows out of that one idea.

For example, if you decide to build a Web version of your résumé to give to potential employers or to help
drum up some consulting business, you can make some good assumptions about how that page should
look and decide what information absolutely must be on it:

m The design should be professional.

m Graphics won't play a large role because the meat of the page should be your work history and other
relevant information.

= You will use a combination of headings, paragraphs, lists, and other text elements to build the page.
m The page may link to the Web sites of companies you've worked on in the past.

= You might want to include downloadable versions of your résumé in text, PDF, or Microsoft Word
format for easy printing.

Although you may decide to expand your résumé page later into a site that includes examples of your work
or references, initially your presence will be just a single page.

If, however, you're planning to put together a digital scrapbook that chronicles your growing family's
adventures, you will make a completely different set of assumptions, such as these:

m The design can be fun, playful, and a reflection of your family's personality.

m Graphics, digital video, and even audio clips will play a significant role in the site because images are
what digital scrapbook is all about.

m The markup you use may very well run the entire HTML gamut because your page will include
everything from text to images to media.

= You may want to link to other family members' Web sites, to your kid's favorite toy stores, or to maps
that show the places you visited on vacation.

= You might want to set up a family mailing list or a guest book so visitors to your site can play an active
role in the site.

Your site may begin with a single page, but chances are it will rapidly grow into an entire Web site.

When you lay out the assumptions for your page along the same general lines shown here, you catch a
glimpse of how your page will evolve from an idea to a Web creation - and what it will take to get you
there.

How do you want your page to look?

The way your page looks is critical to how effectively it does its job. Don't believe us? Read the following
list and imagine what you might think if you saw pages that matched these descriptions:

m Plain = uninteresting: If the site is too plain, people won't be inter- ested and may not stick around
long enough to get to the important information.

m Busy =disorienting: If the page is a riot of images and colors, people may be overwhelmed and visit
another site just to give their eyes a rest.

m Theme doesn't match content = a joke: Visitors won't take you or your information seriously if your
design doesn't match the information on the page. (A Hawaiian luau, for example, really isn't an
appropriate theme for a résumé page unless you cater luaus for a living.)

Although you can continually tweak and update the look and feel of your page, it's a good idea to set aside
some time before you build the page to decide what you want it to look like. Some quick and easy routes
to an initial design idea include these:

m Bookmark or print pages from other Web sites whose designs are similar to what you want to use.
m Sketch a design on paper or even a napkin at a restaurant. Just don't smear ketchup on the design.
m Clip ads and other layouts from magazines if they spark your interest.

The goal hereisn't to become a graphic designer or to finalize every detail of your page's
appearance. Rather, you want to begin to build an overall idea of what you want your HTML to do for you
SO you can construct it accordingly.

Do you need multimedia, scripts, or other advanced features?

You need to decide whether the overall plan for your page requires that you use multimedia, a shopping
cart, a guest book, or any other features that go beyond what HT ML can do for you. For example, if you
plan to build an online store, you'll need a shopping cart and some form of online payment system.
However, a site that just lists your consulting services may not need these features at all.

Table 2-1 shows you different kinds of features you might consider, what kind of effort and skills you might
need to do the work yourself, and where you can find information on these skills.

Table 2-1: Adding Advanced Features to a Page

Feature Degree of Difficulty See
Forms to Although many of your Web pages will be designed to present | Chapter 10
gather users with information, you may want to gather information
information from users as well. Suggestion forms, a guest book, and a
from visitors request for more information page are just a few examples of
how you can use forms to interact with your users. Creating
HTML isn't difficult, but you'll need to have a script or other
application running in the background to work with the form
data. Luckily, many such scripts are available on the Web for
free.
Image To make your Web page do interesting things such as Chapter 12
rollovers, dynamically swap images, display menus that appear and
drop-down disappear, and hide and show content with the click of a
menus, and button, you'll need to use JavaScript or VBScript. Neither is
other difficult to learn, and the Web is full of example scripts you
dynamic can leverage.
features

Multim edia Actually adding audio, video, and multimedia to your Web Chapter 13
page is easy. Digitizing and editing the multimedia
presentations however requires a bit of knowledge and the
right equipment.

Shopping Without any programming knowledge, creating a shopping Chapter 14
cart cart from scratch is not easy. However, many Web site
hosting providers have shopping cart tools you can easily
integrate into your site for a small fee.

If your page needs advanced features to meet its goal, you'll need to plan for those at the beginning of
your page-building fun - especially if you plan to have someone (such as a consultant or even a friend with
the right skills) help you. Think carefully about how you want your advanced features to behave. Consider
whether (and then decide how) they will fit with the other elements on your page. Then write everything
down so you have a guide for the person helping you put the features together.

If you're not sold on using advanced features now but you think they may be nice to have later on, you can
always make a few notes about how you might integrate them into your page, and then set a time frame
for either learning how to build them, or for working with someone to have them built.

Do you plan to create aWeb site?

If you intend for your Web page to grow into a larger site, start thinking about that larger site as you build
the page. Sketch some ideas of other pages your site might include, and how those pages relate to the
first page you plan to build. Don't worry too much about those future pages themselves just yet; often an
overall page design is different when there are more pages to follow.

Planning ahead for a complete site later can save you a lot of rework on the page you build now.
Chapters 17 and 18 provide you the basics about planning and building a site that is easy for visitors to use
and that achieves your site goals.

If you aren't sure whether you want your page to grow into a larger site later on, don't sweat it. The great
thing about HTML is that you can quickly update it and place a new version of your page on the Web
immediately for all to see. When you take advantage of HTML's organic nature, every markup, design, and
content decision you make is reversible.

Chapter 3: Creating Your First HTML Page

Overview
In This Chapter
m Planning your Web page
m Writing some HTML
m Saving your page
= Viewing your page offline and online
m Editing your page

Creating your very first Web page can seem a little daunting, but it’s definitely fun, and our experience tells
us the best way to get started is to jump right in with both feet. You might splash around a bit at first, but
you'll keep your head above water without too much thrashing.

This chapter walks you through four simple steps to creating a Web page. We won't stop and explain
every nuance of the markup you’re using — we save that for other chapters. Instead, we just want you to
get comfortable working with markup and content to create and view a Web page.

Before You Get Started

Creating HTML documents is a little different from creating word-processing documents in an application
like Microsoft Word because you have to use two applications: You do the work in one (your text or HT ML
editor) and view the results in the other (your Web browser). Well, okay, it is a bit unwieldy to edit in one
application and switch to another in order to look at your work, but you'll be switching like a pro from text
editor to browser and back in (almost) no time.

To get started on your first Web page, you need two things:
m Atext editor such as Notepad or SimpleText
= A Web browser

All figuresin this chapter show HTML created with TextPad, a shareware plain-text editor available from
www. t ext pad. com

We discuss these basic tools in a littte more detail in Chapter 6. Also, if you plan to use an HTML editor
such as FrontPage or Dreamweaver to do your HTML work, put it away for now and whip out good ol’
Notepad instead. More advanced HTML editors often hide your HTML from you, and for the purposes of
your first page, you want to see your HTML in all of its glory. You'll be able to make a smooth transition to
a more advanced editor later.

Although you might be tempted to use Microsoft Word or some other word processor instead of Notepad
or a plain-text editor to work with HTML, we strongly recommend that you don’t. Word processors tend to
store a lot of extra information behind the scenes of the files they create (for example, formatting
instructions your computer needs to display or print said files) that you can’t see or change, but that will
interfere with your HTML.

Creating a Page from Scratch

Using HT ML to create a Web page from scratch involves four straightforward steps:
1. Planyour page design.

2. Combine HTML and text in a text editor to make that design a reality.
3. Save your page.
4. View your page in a Web browser.

So break out your text editor and Web browser and roll up your sleeves.

Step 1: Planning a simple design

Although you can just start writing HTML without a final goal in mind, we've discovered (painfully) over time
that a few minutes spent planning your general approach to a page at the beginning of your work will make
the whole page creation process much easier. You don't have to create a complicated diagram or elaborate
graphical display in this step; just jot down some ideas for what you want on the page and how you want it
arranged.

You don’t even have to be at your desk to plan your simple design. Take a notepad and pencil outside and
design in the sun, or scribble on a napkin while you're having lunch. Remember, this is supposed to be fun.

The example in this chapter is our take on the traditional “Hello World” exercise used as the most basic
example for just about every existing programming language. Customarily, you learn how to use a
programming language to display the phrase Hel | o Wor | d on-screen. In our example, we create a short
letter to the world instead, so the page is a bit more substantial and gives you more to work with. Figure 3-1
shows our basic design for this page.

Tite - Hello Lortd

Letter Faragraphs

LWhite text

Figure 3-1: Taking a few minutes to sketch your page design makes writing HT ML easier.
The basic design for the page includes four basic components:
m A serviceable title: “Hello World”.

m A few paragraphs explaining how the page’s author plans to help the Earth meet its yearly quota of
Znufengerbs.

m A salutation of “Sincerely”.
m A signature.

Don't forget to jot down some notes about that color scheme you want to use on the page. For effect, we
decided that our example page should have a black background and white text, and the title should be
“Greetings From Your Future Znufengerb Minister.”

When you know what kind of information you want on the page, you can move on to Step 2 — writing the
markup.

Step 2: Writing some HTML

You have a couple of different options when you're ready to create your HTML. If you already have some
content that you just want to describe with HTML, you can save that content as a plain-text file and add text
around it. Alternately, you can start creating markup and add the content in as you go. In the end, you'll
probably use some combination of both.

In our example, we already had some text to start with that was originally in a Word document format; we just
saved the content as a text file and added markup around it.

To save a Word file as a text document, choose FiledSave As. In the dialog box that appears, choose Text
Only (*.txt) from the Save As Type drop-down list.

Figure 3-2 shows how our draft letter appears in Microsoft Word before we convert it to text for our page.

mmmmrmmmmww

T‘ﬂﬂq ﬂ-l'ﬁ.# LR, ot [i'EDEﬂ-ﬂW#" _EiEE
[i3] e e - if TR
= .,.n...._w_.,.;1|...Ehgfn.mn-nn--"
e : : O
Hallo Workd
T et i A0 s Tt Cith b (il e sl o pclieing it
of Lnsdvugies Ta'kaip o myprey ompeebrimn ol sisbial s plerti
Lrvngent ivdimy | Do e Al mares o ||-_:\ru-|-| ruthiml 1w
TrT e i o e b adeing Wi iy et e 1 S e
Eifrget i

Dot o ey Ve bt ot o Al st pmrel e (o e
S T S, Thal
ri-.-wn'\- :-l.rrlrhl.l"ll-ll r Lk o L'uMI-'Gf
[e PN U i TR wrs of Dy e WA

s et by T sl | i Dt e
it ol Zintge Bl il L o i, i Zanbagisi & §
ik

Tarmy,

Zrg Missierof Agetan

E 4
[hagen T ST e S B S T

Figure 3-2: The letter that is the text for our page in word-processing form.

“Hello World” in HTML

The complete HTML page looks like Listing 3-1:

Listing 3-1: The Complete HTML Page for the Zog Letter

4

<h

</

DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dt d" >

tm >
<head>

<title>Greetings From Your Future Znufengerb Mnister</title>
</ head>

<body bgcol or="bl ack” text="white">
<hl>Hel | 0o Worl d</hl>

<p>It has conme to our attention that Earth has fallen well short of
producing its yearly quota of Znufengerbs. To help you inprove your
producti on and establish a plentiful Znufengerb colony, |, Zog, the
M ni ster of Agriculture of Gustland, will be arriving on your planet
within the week along with ny herd experts to take command of your
Znuf engerb enterpri se.

</ p>

<p>Do not fear, | have the highest expectations for a snooth transition
fromyour current production of the creatures you call cows to our bel oved
Znuf engerbs. The future of the galaxy hinges on Earth’s ability to neet

its Znufengerb quota, and | will do all in nmy power to make you the npst
productive source of Znufengerbs in the universe.

</ p>

<p>l have studi ed your history extensively and feel that | amthe best
candi date for the position of Znufengerb Mnister. | look forward to
pl aci ng a Znufengerb in every hone to bring you joy.

</ p>

<p>Si ncerely, </ br>
Zog, Mnister of Agriculture
</ p>

</ body>
htm >

What the markup is doing

Th

e HTML includes a collection of markup elements and attributes that describe the letter's contents:
The<ht m > element defines the document as an HTML document.

The<head> element creates a header section for the document, and the <t i t | e> element inside of it
defines a document title that will be displayed in the browser’s title bar.

The<body> element holds the actual text that will display in the browser window. The bgcol or and
t ext attributes work with the <body> element to set the background color to black and the text color to
white.

The<h1> element marks the Hello World text as a first-level heading.

m The<p> elements identify each of the paragraphsin the document.
m The
 element adds a manual line break after the word Sincerely in the salutation.

Don’t worry about the ins and outs of how all of these elements work. They are covered in detail in Chapters
4and?7.

After you create a complete HTML page, or at least the first chunk of it that you want to review, you must
save it before you can view your work in a browser.

Step 3: Saving your page

Remember that you use a text editor to create your HTML documents and a Web browser to view them, but
before you can let your browser loose on your HTML page, you have to save that page. When you're just
building a page, you should save a copy of it to your local hard drive and view it locally with your browser.

Choosing a location and name for your file
When you save your file to your hard drive, keep two things in mind:
= You need to be able to find it again soon.
m The name should make sense to you and work well on a Web browser.

That said, we recommend that you create a folder somewhere on your hard drive especially for your Web
pages. Call it “Web Pages” or “HTML” (or any other name that makes sense to you), and be sure you put it
somewhere easy to find.

When you choose a name for your page, don’t include spaces in it because some operating systems — most
notably Unix and Linux (the most popular Web-hosting operating systems around) — don't tolerate spaces in
flenames. Choose names that make sense to you and that you can use to identify file contents without

actually opening the file.

In our example, we saved our file in a folder called Web Pages and named it (drumroll, please)
zog letter. htm , as shown in Figure 3-3.

& CiWeh Pages

|| Fite Edit Miew Favores Taols He " [
| oeBak v —+ - [| (QFemch 3 Fiken i
.i-ﬂ.;!.mal i_| reT— = o6 |
[Hame [Sus | Type [
) 100 bt Hirid IER Mieresol HTML Dec

4 | |
[Vobjectisy 1B KE 5wy Compiter 7

Figure 3-3: Choose an easy-to-access location and a descriptive filename for your HTML pages.

.htm or .html

Notice that our filename, zog | etter. htm , usesthe. ht M suffix You can actually choose from one of
two suffixes for your pages: . ht m or. ht m The shorter . ht mis a relic from the 8.3 DOS days when

flenames could only have eight characters followed by a three-character suffix that describes the file’s type.
Today, operating systems can support very long filenames and suffixes that are more than three letters long

S0 we suggest you stick with . ht mi .

That said, you can use either . ht mor . ht il , and Web servers and Web browsers will handle both equally

well. We do, however, recommend that you stick with one option or the other to be consistent. Even though
. html and . ht mfiles are treated the same by browsers and servers, they are different suffixes. The name
zog_l etter. htm isdifferentfrom zog_| et t er. ht m and this matters when you create hyperlinks, as

you learn in Chapter 5.

Step 4: Viewing your page

After you save a copy of your page, you're ready to view it in a Web browser. If you haven’t opened your
browser, do that now. Next, choose File@Open and click the Browse button. Navigate your file system until
you find your HT ML file, as shown in Figure 3-4.

Microaofl Internet Exphaier

Lok | ‘i wieh Fage | =amo -

(P e 1 [o=
Fiea ol g [u:ll_u..._ 3 Concsl

Figure 3-4: Use Internet Explorer to navigate to your Web pages.

Click the Open button, and the page appears in your Web browser in all its glory, as shown in Figure 3-5.

B Gipaags Fram Tovs Fons e Zrlenpail M ahan) . Do el |an e Lighers
s L& View Faveslies Toals il =
Gmllat = 4 - (it | Gk e St |- - SE- o] WH

T ey pe———— =] 25

] D Wy Covprwr
Figure 3-5: Viewing a file in your Web browser.

You aren’t actually viewing this file on the Web yet; you're just viewing a copy of it saved on your local hard
drive. You can't give anyone the URL for this file yet, but you can edit and view the changes you make.

Editing an Existing Web Page

Chances are you'll want to change one thing (at least) about your page after you view it in a Web browser
for the first time. After all, you can’t really see how the page is going to look when you're creating the
markup, and you might decide that a first-level heading is too big or that you really want purple text on a
green background.

To make changes to the Web page you've created in a text editor and are viewing in a browser, follow
these steps:

1. Leave the browser window with the HTML page display open and go back to the text editor.
2. Ifthe HTML page isn’'t open in thetext editor, openit.

You should have the same file open in both the browser and the text editor, as shown in Figure 3-6.

& Imastad [iah Pages ity letes i) Wi 3 r
S| Mlle Eali Scorce View Teas M T R
Corligun Whaduw g b=

L Bt R = L T L —
A.“:lgllq_ T _ﬂ LTl

e S 3D i - T8 Rechl i |
ER A o i L

B Iello World

griamy
141 lill_I
oy v, s Tt 1| 18 i F = i =

Figure 3-6: Viewing an HTML iIe |n your té)& editor zrr;d Web browser at the same time.
3. Make your changes to the HTML and its content in the text editor.
4. Save the changes.
This is an important step. If you don't save your changes, you won't see them in the Web browser.
5. Move back to the Web browser and click the Refresh button.
6. Repeat these steps until you're happy with the final display of your page.

Although you don’t have to keep the HTML file open in both the text editor and the browser while you work,
it's easiest if you do. You can quickly make a change in the editor, flip to the browser and refresh, flip back
to the editor to make more changes, flip back to the browser and refresh, and so on.

In our example letter, we decided after our initial draft of the HTML page that we should add a date to the
letter.Figure 3-7 shows the change we made to the HTML to add the date and the resulting display in the
Web browser.

B oot F o Vo i il il 08 wioni . BB e B Dot) I b

Tis D88 View [avesiws Toals lieks =
L R R R - 1 e e o [T L - e B o 5 ° §
T e e—— = 25

Hello World

=1

e Do = vy Corparr
Figure 3-7: A change in the HTML is displayed in a browser after a quick save and refresh.

This approach to editing an HTML page only applies to pages saved on your local hard drive. If you want
to edit a page that you have already stored on a Web server, you have to save a copy of the page to your

hard drive, edit it, verify your changes, and then upload the file again to the server, as discussed in the
following section.

Posting Your Page Online

After you're happy with your Web page, it's time to put it online. Chapter 17 is devoted to a detailed
discussion of what you need to do to put your page online, but to sum it up in a few quick steps:

1. Find a Web hosting provider to hold your Web pages.
Your Web host might be a company Web server or space that you pay an ISP for. If you don’t have
a provider yet, double-check with the ISP you use for Internet access — see whether you get some

Web-server space along with your access. Regardless of where you find space, get details from the
provider on where to move your site’s files and what your URL will be.

2. Use an FTP client or aWeb browser to make a connection to your Web server as specified in
the information from your hosting provider.

3. Copythe HTML file from your hard drive to the Web server.
4. Use your Web browser to view the file via the Internet.

For example, to host our letter online atft p. i 0. com ~nat anya, we used Internet Explorer to access
the site and provided the appropriate name and password (which you will get from your ISP). A collection
of folders and files appeared.

We copied the file to the server with a simple drag-and-drop operation from Windows Explorer to Internet
Explorer, as shown in Figure 3-8.

| fivon s et 1ok <
dave s o acr | ek o o o) YRk L Fane d.
h‘ 1 S] Tipw
- TR Mgt HTHL B
I R = [N FE |
e by iyl wadiy
= £
e & 8 &
pup bedi dubel oneligihis s bl
s 8 o =&
rartiney ndechind g bchn masiwen
5
e & &
Wb b paec s ecge ega ol

[iar mstanys) bt

Figure 3-8: Drag and drop HTML files from your local system to a Web server to make them available
on the Internet.

The URL for this pageishtt p: //wwv. i 0. com’ ~nat anya/ zog |l etter. htm , and the page is now
served from the Web browser instead of from a local file system, as shown in Figure 3-9.

http://www.io.com/~natanya/zog_letter.html

B i et Fows Vi B o w [itslns Vsswnad) byt it [gl awei

Tde L8 View Favisites Toals lieks [|
] T TR R A | T R T T L .
Aot 8] 1, e i s, i e =]l

Hello World

] D

M
Figure 3-9: After you transfer a file to a Web server, it's available via a URL to anyone with a Web
browser and live Internet connection.

Again, see Chapter 17 for more details on how to serve your Web pages to the world.

Part Il: Getting Started with HTML

In This Part:

Chapter 4: Structuring Your HTML Documents
Chapter 5: Linking to Online Resources
Chapter 6: Finding and Using Images

Chapter 7: Top Off Your Page with Formatting

In this part. ..

In this part of the book, we describe the markup and document structures that make Web pages workable
and attractive. To begin with, we explore and explain basic HTML document structure and talk about
organizing text in blocks and lists. Next, we explain how linking works in HTML, and how it provides the
glue that ties the entire World Wide Web together. Then we explain how to add graphics to your pages.
Finally, we cover the elements of HTML formatting — including colors, backgrounds, and fonts — so you
can make your HTML documents (and Web pages) really stand out!

Chapter 4: Structuring Your HTML Documents

Overview
In This Chapter
m Creating a basic document structure
m Defining metadata
m Working with paragraphs, headings, and other block elements
m Creating bulleted, numbered, and definition lists

HTML documents consist of text, images, multimedia files, links, and other pieces of content that you bring
together into a single page using markup elements and attributes. You use blocks of text to create
headings, paragraphs, lists, and more. The first step in creating a solid HTML document is laying a firm
foundation that establishes the document's structure.

This chapter covers the major elements that you use to set up a basic HTML document structure —
including the head and body of the document. We also show you how to define the various large chunks of
text that will make up your document. Finally, you find out how to use HTML s three different kinds of lists
— bulleted, numbered, and definition — to group like information and add a little visual variety to your

page.

Establishing a Basic Document Structure

Although no two HTML pages are alike — each employs a unique combination of content and elements to
define the page — every HTML page must have the same basic document structure that includes

m A statement that identifies the document as an HTML document
m Adocument header
m A document body

Every time you create an HTML document, start with these three elements; then you can fill in the rest of
your content and markup to create anindividual page.

Although a basic document structure is a requirement for every HTML document, creating it over and
over again can be alittte monotonous. Most HTML editing tools — shareware, freeware, and commercial
— can automatically set up the basic document structure for you when you start a new HTML document.
As you evaluate potential HTML editors, look for this feature and others that help you create commonly
used chunks of HTML, such as list structures and basic tables. Chapter 16 includes more information on
finding a good HT ML editor to make your page creation more efficient.

Labeling Your Document as an HTML Page

Every HTML document must begin with a DOCTYPE declaration that specifies which version of HTML you
used to create the document. (DOCTYPE is short for document type.) There are three possible DOCTYPE
declarations for HTML 4.0 documents, one for each of the three flavors of HTML.:

m HTML 4.0 Transitional: The most inclusive version of HTML 4.0 that incorporates all HT ML structural

elements as well as all presentation elements.

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN
"http://ww. w3. org/ TR REC- ht ml 40/ 1 oose. dt d" >

m HTML 4.0 Strict: A streamlined version of HTML that excludes all presentation-related elements in
favor of style sheets as a mecha- nism for driving display.

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0/ /EN"
"http://ww.w3.org/ TR REC-html 40/ strict.dtd">

m HTML 4.0 Frameset: A version of HTML that begins with HTML 4.0 Transitional and includes all the
elements that make frames possible.

<! DOCTYPE HTM. PUBLIC "-//WBC// DTD HTM. 4.0 Franeset//EN"
"http://ww.w3.org/ TR REC- ht M 40/ franmeset . dtd" >

Regardless of the HTML flavor you choose to use, always begin every document with a DOCTYPE
declaration. Most browsers can display your page even if you don’t, but some others won't, so it's always
better to be safe than sorry.

Chapter 1 includes more information on why there are three different flavors of HTML and shows you
how to choose the right flavor for an individual HTML document.

After you specify which version of HTML the document follows, you must create an <ht m > element to
hold all the other content markup in your page:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >

</htm >

It's easy, but also important: Never forget that a single <ht m > element holds all other text in
your HTML page.

Adding a Document Header

After you've declared which version of HTML your document adheres to and created an <ht m > element,
you set up a document header that provides some basic information about the document, including its title
and metadata, which provides useful information about the document such as keywords, author information,
a description, and so forth. Also, if you're going to use a style sheet (internal or external) with your page, you
include information about that style sheet in the header.

Chapter 11 includes a complete overview of creating style sheets with CSS and shows you how to
include them in your HTML documents.

The<head> element, which defines the page header, imnmediately follows the <ht m > opening tag:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>

</ head>
</htm >

Giving your page atitle

Every HTML page needs a descriptive title that helps a visitor understand at a glance why the page exists in
the first place. The page title should be concise, yet informative. (For example, My home page isn’t nearly as
informative as Ed’'s IT Consulting Service.)

You define the title for your page using the <t i t | e> element inside the <head> element:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht M 40/ 1 oose. dtd" >

<htm >
<head>
<title>Ed’s IT Consulting Service</title>
</ head>
</htm >

The document title doesn’t actually show up in the middle of a browser window in huge boldface text.
Instead, most browsers display the page title as in the browser window’s title bar, as shown in Figure 4-1.

ﬂl:ll's IT Comailing Serdcs - Bicrosall Inteimel Exploian M= E
|| File Edit View Favorlies Taols Help [= |
| bk = = - Q[| @Semch [SiFmote | Fhistcn =

=
L — -l
&7 Done [1Sy Computer ,;

Figure 4-1: HTML page titles usually appear in a Web browser’s window title bar.

Search engines use the contents of the <t i t | e> bar when they list Web pages in response to

a query. Your page titte may be the first thing your visitors read about your Web page, especially if they find it
via their favorite search engines because your page will most likely be listed (by its title) with many others on
a search results page — you’ve got one chance to grab your audience’s attention and get them to choose
your page over the others. A well-crafted title can do just that, as discussed in more detail in Chapter 17.

Defining metadata

The term metadata refers to data about data; in the context of the Web, it means data that describes the data
on your Web page. Metadata for your page may include

m Keywords

m A description of your page

= Information about the page author

m The software application you used to create the page

You use the <net a> element and the name and cont ent attributes to define each piece of metadata for
your HTML page. For example, the following elements create a list of keywords and a description for a
consulting-service page:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>
<title>Ed"s IT Consulting Service</title>
<net a name="keywords" content="IT consulting, MCSE, networking guru">
<neta name="description" content="An overview of Ed's skills and services">
</ head>
</htm >

The HTML specification doesn’t predefine the different kinds of metadata you can include in your page, nor
does it specify how to name different pieces of metadata, such as keywords and descriptions. So, for
example, instead of using keywor ds and descri pti on as names for keyword and description metadata,
you can just as easily use kwr d and desc, as in the following markup:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>
<title>Ed's IT Consulting Service</title>
<neta name="kwd" content="IT consulting, MCSE, networking guru">
<net a nanme="desc" content="An overview of Ed's skills and services">
</ head>
</htm >

So if you can use just any old values for net anane and cont ent attributes, how do systems know what to
do with your metadata? The answer is — they don’t. Each search engine works differently, although
keywords and description are commonly used metadata names, many search engines may not recognize or
use other metadata elements that you include. Instead, many developers use metadata as a way to leave
messages for others who might look at the source of their page later, or with the hope that one day browsers
and search engines will make better use of the metadata they've provided.

Although you may not want to take the time to load your page with metadata, be sure you do include

keywords and a page description. Those two metadata elements are most commonly used by search
engines. Keywords help engines catalog your page more precisely; many engines display your description
along with the page title, which gives prospective visitors a bit more information about your site — and maybe
incentive to visit it.

Automatically redirecting users to another page

You can use metadata in your header to send messages to Web browsers about how they should display or
otherwise handle your Web page. You commonly see the <net a> element used this way to automatically
redirect page visitors from one page to the other. For example, if you've ever come across a page that says
Thi s page has noved. Please wait 10 seconds to be automatically sent to the new
| ocati on (or something similar), you've seen this trick at work.

To use the <net a> element to send messages to the browser, you use the ht t p- equi v attribute in place
of the nane attribute. Then, you choose from a predefined list of values that represents instructions for the
browser. These values are based on instructions you can also send to a browser in the HTTP header, but
changing the HTTP header for a document is more difficult than embedding the instructions into the Web
page itself.

To instruct a browser to redirect users from one page to another, you use the <nmet a> element with an

ht t p- equi v attribute with a value of r ef r esh and a value for cont ent that specifies how many seconds
before the refresh happens and what URL you want to jump to. For example, this <nmet a> element creates a
refresh that jumpsto www. W3. or g after 15 seconds:

<neta http-equiv="refresh” content="15; url= http://ww.w3.org/">

Older Web browsers may not know what to do with <net a> elements that use the htt p- equi v

element to create a redirector page. Be sure to include some text and a link on your page to enable a visitor
to link manually to your redirector page if your <met a> element fails.

The line shown in bold in the following markup shows you how:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>
<title>All About Markup</title>
<neta http-equiv="refresh" content="15; url= http://ww.w3.org/">
</ head>

<body>
<p>This page is still in developnent. Until we are done, please visit
the WBC Webhsite for the definitive
col l ection of markup-rel ated resources.
</ p>

<p>Pl ease wait 10 seconds to be autonmatically redirected to the WBC. </ p>
</ body>
</htm >

If auser’s browser doesn’'t know what to do with your redirector information, the user can simply click the link
in the page body to go to the new page, as shown in Figure 4-2.

Jn'l.ll Aboin Baikup - Microsal Interniel Explorer
|| File Edit View Favorlies Tosls Help [o |

Thes page 15 still m deselopment. Unbl we are done, please wnt the

Pleape weaat 10 seconds to be atomatcally redirected to the W30

=
[E1Dene [[1= wy Computer =

Figure 4-2: When you use a <nmet a> element to create a page redirector, include text that visitors can
click if their browsers can’'t handle the redirector.

You can use the ht t p- equi v attribute with the <met a> element for a variety of other

purposes, including setting an expiration date for a page, specifying the character set (that is, language) the
page uses, and more. To find out what your ht t p- equi v options are (and how to use them), check out the
Dictionary of HTML MET A tags at the following URL.:

http://vancouver - webpages. coml META/ net at ags. detail . htm

http://vancouver-webpages.com/META/metatags.detail.html

Creating the Body of Your HTML Document

After you set up your page header, create a title, and define some metadata, you're ready to create the
HTML and content that will show up in a browser window. The <body> element holds every bit of content
and markup not defined in the header. In general, if you want to see something in your browser window,
putitin the <body> element:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>
<title>Ed's IT Consulting Service</title>
<neta name="kwd" content="IT consulting, MCSE, networking guru">
<neta name="desc" content="An overview of Ed's skills and services">
</ head>

<body>
<p>Ed's I T Consulting Service Honepage</ p>
<p>Ed has over 20 years of |IT consulting experience and is avail able
to help you with any I T need you m ght have. From network design
and configuration to technical docunentation and training, you can
count on Ed to help you create and manage your |IT infrastructure.</p>

<p>For nore information please contact Ed by e-mail at ed@t guru.com or
by phone at 555. 555. 5555. </ p>
</ body>
</htm >

Figure 4-3 shows how a browser displays this complete HTML page. Again, notice the following:
m The content of the <t i t | e> element is in the window's title bar.
m The<net a> elements don't affect the page display at all.

m Onlythe paragraph text contained in the <p> elements in the <body> element actually displays in the
browser window.

'!l:r.i's IT Consilting Service - Microsoll Interned Explored

|| Fila Edit View Faverites Tooks Help [« |
-

Ed's [T Conndtmg Sernce Homepage

Ed has over 20 years of IT consubtmg expenence and us avalable to help
wou with any IT meed you might kave, From network dezign and
configuraton to techmeal documentahon and traresg, you can count am
Ed to help you create and manage your IT mfrastruchare

For more mformaten please contact Ed by e-mal at ediiigaru com or

— =
‘] Done [T i3 Wy Compoter 2
Figure 4-3: Only Content in the <body>element appears in the browser's window.

You can use a variety of attributes with the <body> element to define the default text and
link colors for your document text. Chapter 7 covers these attributes in detail.

Working with Blocks of Text

Here’s a super-ultra-technical definition of a block of text: some chunk of content that wraps from one line
to another in an HTML element. Every bit of content on your Web page has to be part of an initial block
element, and every block element sits within the <body> element on your page. In the end, your HTML
page is a giant collection of blocks of text.

Inline content is a word or string of words inside a block element. The difference between
the inline content and a block of text is important because certain HTML elements (like those discussed in
this chapter) are designed to describe blocks of text, whereas others (such as linking and formatting
elements) are designed to describe a few words or lines of content found inside those blocks. The
remaining chapters of this book often refer to block elements and inline elements. Just remember that
inline elements must be nested within a block element or your HTML document won't be syntactically
correct.

HTML recognizes several different kinds of text blocks that you might want to use in your document,
including (but not limited to)

m Paragraphs
m Headings

m Block quotes
m Lists

m Tables

m Forms

This list is far from complete, but it gives you a good idea of what kinds of text are labeled as text blocks in
HTML. This chapter looks at the HTML markup you use to describe less-complicated text blocks such as
paragraphs and lists. Later chapters delve into the more complicated text structures such as tables and
forms.

Inserting paragraphs

Paragraphs are probably used more often in Web pages than any other kind of text block. To label a
paragraph, simply place your content in a <p> element. Presto! Here’s what it looks like:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>
<title>All About Blocks</title>
</ head>

<body>
<p>This is a paragraph. It’s a very sinple structure that you will use
time and again in your Wb pages. </ p>
<p>Thi s is another paragraph. Wat could be sinpler to create?</p>
</ body>
</htm >

This HTML page includes two paragraphs, each marked with a separate <p> element. Most Web
browsers add a line break and full line of white space after every paragraph on your page, as shown in

Figure 4-4.

B A1 Aboit Blocks - Micioeal Iinermen Explors

|| File Edit Miew Favorles Tosls Help [a7 |
| - G [G| et ol i~

Teez iz a paragraph It & very senple structure that you wall e time
and agam m your Web pages

Thar 12 asother paragraph What could be smpler to ereate?

=
&1 Done [[By Competrr
Figure 4-4: Web browsers delineate paragraphs with a line break and white space.

The default alignment for a paragraph is left, and you can use the al i gn attribute with a value of cent er,
right,orjustify tooverride that default and control the alignment for any paragraph.

<p align="center">This paragraph is centered.</p>
<p align="right">This paragraph is right-justified.</p>
<p align="justify">This paragraph is double-justified.</p>

Figure 4-5 shows how a Web browser aligns each paragraph according to the value of the al i gn
attribute.

3 Al About Blocks - Micresoh Inermet Explores

File Edit View Fovorites Tools Help | |
=l

Thes paragraph 15 cenfered
Thes paragraph 15 nght - ustfied

Thes paragraph is double-mustfied

- |

E||Ml1u [[2 My Computer
Figure 4-5: Use the al i gn attribute with a paragraph to specify its horizontal alignment.

If you look at other people’s markup, you may find that many eliminate the closing </ p> tag
when they create paragraphs. Although some browsers will let you get away with this, leaving out the
closing tag doesn’t follow correct syntax and will cause problems with style sheets (at the very least).
Additionally, leaving out closing tags can get in the way of a consistent display for your page across all
browsers.

Breaking down information with headings

Headings are commonly used to break a document into sections. This book, for example, uses headings
and subheadings to divide every chapter into sections — and you can do the same with your Web page. In
addition to creating an organizational structure, headings help break up the visual display of the page and
give readers visual clues about how the different pieces of content are grouped.

HTML includes six different elements to help you define six different heading levels in your documents.
Every browser has a different way of displaying these different heading levels. Most graphical browsers
use a distinctive size and typeface, although text-only browsers may use a different convention because all
content is displayed in a single size and font. In graphical browser displays, first-level headings (<h1>) are
the largest (usually two or three font sizes larger than the default text size for paragraphs); sixth-level
headings (<h6>) are the smallest and may be two or three font sizes smaller than the default text size.

The following excerpt of HTML markup shows all six headings at work:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN"
"http://ww. w3. org/ TR REC- ht m 40/ 1 oose. dtd" >

<htm >
<head>
<title>All About Blocks</title>

</ head>

<body>
<h1>First-1 evel headi ng</hl>
<h2>Second- | evel headi ng</ h2>
<h3>Third-1 evel headi ng</ h3>
<h4>Fourt h-1evel headi ng</h4>
<h5>Fi ft h-1 evel headi ng</ h5>
<h6>Si xt h-1 evel headi ng</ h6>

</ body>

</htm >

Figure 4-6 shows this HTML page as rendered in a browser.

'J-"l.ll Aboiid Blocks - Miciosoli Interned Explorer M= E
Eile Edit View Favorites Toals Help -
=]

First-level heading

Second-level heading
Third-level heading

Fourth-level heading
Fifth-leve] heading

fuvih Il hiidog

|

&) Done 4= My Computes
Figure 4-6: Web browsers display headings in decreasing size from level one to level six.

You shouldn’t use a second-level heading until you've used a first-level heading, nor a third-level
heading until you've used a second, and so on. If you want to change the way headings display in a
browser, you can either use <f ont > elements (as discussed in Chapter 7) or style sheets (as discussed in

Chapter 11).

Exerting More Layout Control Over Blocks of Text

Although blocks of text form the foundation for your page, you'll occasionally want to break those blocks up to
better guide readers through your content. Two of the most common methods for breaking up the blocks of
text on your page are line breaks and horizontal rules.

Using block quotes

Ablock quote is a long quotation or excerpt from a printed source that you want to set apart on your page. You
use the <bl ockquot e> element to identify block quotes, as in this markup:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN'
"http://ww. w3. org/ TR/ REC- ht M 40/ 1 oose. dtd" >

<htm >
<head>
<title>Fanpbus Quotations</title>
</ head>

<body>
<h1>An I nspiring Quote</hl>
<p>When | need a little inspiration to remind nme of why | spend ny days
in the classroom | just renmenmber what Lee |ococca said: </p>
<bl ockquot e>
In a conpletely rational society, the best of us would be teachers
and the rest of us would have to settle for something el se
</ bl ockquot e>
</ body>
</htm >

Most Web browsers display block-quote content with a slight left indent, as shown in Figure 4-7.

An Inspiring Quote

When [need a Etle mspirabon to remind me of why I spend my days in the
clazgroom, I pust remember what Lee Tococca sad

In a completely raticonal socicty, the best of ue would be
teachers and the rest of us would have o seitle For somethng
else, <=Lee lococca

Bl

] Done [_E My Computer
Figure 4-7: Web browsers typically indent a block quote to separate it from paragraphs.

Using preformatted text

HTML ignores white space; if your block elements include hard returns, line breaks, or too many large spaces,
the browser won't display them. For example, in the following markup we included several hard returns, some
line breaks, and a lot of spaces, but as you can see in Figure 4-8, Web browsers ignore every bit of formatting
you might try to add.

<p>Thi s is a paragraph
with a lot of white space

throwmn in for fun (and as a test of course).</p>

2 White space - Microsol Intemaet Explores

File Edit View Favorites Tools Help | e |

Theixa paragraph siath a lot of wehute space throvm m for Bon (amd
& i teet of course)

=l
m Dane L= My tnmpuht
Figure 4-8: Web browsers routinely ignore white space.

Sometimes, however, you may want the browser to display the white space you include in an HTML page (for
example, when you include code samples or text tables where proper spacing is important). The preformatted
text element (<pr e>) instructs browsers to keep all white space intact when it displays your content (as in the
sample that follows). Use the <pr e> element in place of the <p> element to get the browser to honor all your

white space, as shown in Figure 4-9.

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht m 40/ 1 oose. dtd" >

<htm >
<head>
<title>Wite space</title>
</ head>

<body>
<pre>This is a paragraph

with a lot of white space

thrown in for fun (and as a test of course).
</ pre>
</ body>
</htm >

A White space - Microsof Intemet Explores

flle Edit Wiew Fgvorites Tools Holp -
=l

Thiz i3 & parageaph
with & lot of white space

cthrown in for fun (and as a ceat of course].

x|

] pane L2 My Computer
Figure 4-9: Use preformat-ted text to force browsers to recognize white space.

Using preformatted text in block quotes

You can nest <pr e> elements inside <bl ockquot e> elements to carefully control the way the lines of

quoted text appear on the page. This feature is particularly useful for poetry stanzas or other quoted text in

which line breaks and white space are important, as shown in this bit of markup and Figure 4-10.
<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN

"http:/

<htm >
<head>

/ www. W3. or g/ TR/ REC- ht ml 40/ | oose. dt d" >

<title>Shakespeare in HIM.</title>

</ head>

<body>

<hl>Shakespear

<bl ockquot e>
<pre>Shal | |
Thou art nor
Rough wi nds

e's Sonnets XVIII1: Shall | conpare thee to a sumrer's day?

conpare thee to a sunmer's day?
e lovely and nore tenperate.
do shake the darling buds of My,

And summer's | ease hath all too short a date.

Sonetime too hot the eye of heaven shi nes,
And often is his gold conplexion di mid;
And every fair fromfair sonetine declines,

By chance or
But thy eter

nature's changi ng course untrinmm d;
nal sumer shall not fade

Nor | ose possession of that fair thou ow st;
Nor shall Death brag thou wander'st in his shade,

When in eter

nal lines to time thou grow st:

So long as nen can breathe or eyes can see,
So long lives this, and this gives |life to thee.</pre>

</ bl ockquot e>
</ body>
</htm >

J Shakesjeaie in HTML

| File Edit Wiew Favorites Tooks Help [o |
Jion L e e R

Miciosol Bternil Explofed

2| Dseach [sirwoin Py | e = b

Shal

Amd
D

By &
Buk
Neg
Hog

=T |

4|

Shakespeare's Sonnets XVIII: Shall I
compare thee to a summer's day?

Thioi
Rz

And oftenr 13 hiz gold complexion dimss' d:
And every fair from £aic sometime daclines,

¥nhen
afi &S BERE cah BEGAthE oF &VeS Can 544,

So long lives this, and chis gives life to chee.

L I compace thee TO & sumeer's day?

art more lovely and more temperats,

h wirds do ahake the darling buds of May,
sumser "= lease hath all too short a date.
time coo kot che aye of beaven shipes,

hansE oF RALUEE'S CRARJLEG COUESS WRALE ima"dr
thy eternal suswer shall not fade

lose pospession of that falr thou ow st
shall Deach brag thou wvander'sc in his shade,
in eternal lines to time thow growe'st:

s

] Dane

[[&y Computer e

Figure 4-10: Use<pr e> with <bl ock quot e> to control white space within a quotation.

</ hl>

Adding line breaks

Typically, browsers wrap any text that appears in block elements such as paragraphs, headings, and block
quotes; if the text reaches the end of a browser window, you don't have much control over where aline ends
(unless you use preformatted text). If you don't want to worry about accounting for every space in your content,
you can always turn one paragraph into two - but you may not want the extra line of white space that most
browsers include after each paragraph. What to do?

The best way to specify when you've reached the end of a line in a paragraph, but aren't ready to create a new
paragraph, is to use a line break, denoted by the
 element. The
 is the HT ML equivalent of the
good, old manual hard return that you use in paragraphs and other blocks of text when you're working in a
word-processing program.

Any time a browser sees a
, it breaks the text there and moves to the next line. The following markup

shows a different way to break the lines of text in a poem. The entire poem is described as a single paragraph,
and the
 element marks the end of each line:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht M 40/ 1 oose. dtd" >

<ht m >
<head>
<title> Shakespeare in HIM</title>
</ head>

<body>
<hl>Shakespeare's Sonnets XVIII: Shall | conpare thee to a sunmer's day? </hl>
<p>
Shall | conpare thee to a sunmer's day?

Thou art nore lovely and nore tenperate.

Rough wi nds do shake the darling buds of My,

And sunmmer's |l ease hath all too short a date.

Soretime too hot the eye of heaven shines,

And often is his gold conplexion dinmmd;

And every fair fromfair sonetinme declines,

By chance or nature's changing course untrinmd;

But thy eternal summrer shall not fade

Nor | ose possession of that fair thou ow st;

Nor shall Death brag thou wander'st in his shade,

When in eternal lines to time thou grow st:

So long as nmen can breathe or eyes can see,

So long lives this, and this gives life to thee.

</ p>
</ body>
</htm >

Figure 4-11 shows how a browser handles each line break. In this example, the poem isn't left-indented
because the <p> element replaces the <bl ock quot e> element.

3 Shakespiare in HTML - Microsol Infernel Explores

| File Edit View Favorites Tooks Help |
| wback = = - DA | Dsewch (SiFaveims Privoy | e b b M
E|

Shakespeare's Sonnets XVIII: Shall I
compare thee to a summer's day?

Shall I compare thee to a summer’s day?

Thiu art more lovely and more temperate

Eough vands do shakce the darkng bueds of May,
And sumener's lease hath all too short a date
Fometune too hot the eye of heaven shines,

And often i kae gold complesnon dimen'd,

And ewery farr o for sometene declmes,

By chance or nahae's changmg couse uninmm'd.
But thy eternal szmmer thall not Eade

Hor lose porsesnon of that Ber thou ow'st,

Hor shall Dieath beag theu wander'st m e shade,
When m sternal nes to me thou grow'st

5o long a2 men con breathe or eyes can see,

5o longg tves thes, and this gves bife to thee

<]
&1 Done [| Sy computer 2
Figure 4-11: Using the
 element to specify where lines in block elements should break.

Using the
 element isn't necessarily better than using preformatted text in block quotes, but
it does offer you a choice in the visual results.

Adding horizontal rules

The horizontal rule element (<hr >) helps you include solid straight lines (rules) on your page - and put them
anywhere you'd rather not use a graphic. If you want to break your page into logical sections (or just separate
your headers and footers from the rest of the page), a horizontal rule is a good option. Users don't have to wait
for a graphic to download because the browser creates the rule based on the <hr > element, not an image

reference.

When you include an <hr > element in your page, as in the following HTML, the browser replaces it with a line,
as shown in Figure 4-12.

JHilritu nlal Riles - Biciosall Inteinet Explonen M= B

| File Edit View Favortes Teols Help [N
|k = = - Q[A DySemch [Favoites B
|
Tz i a paragraph fallowed by a honzontal e
Thes 17 a paragraph preceded by a honzontal nade
. 4|
[Done [[\E My Computer "

Figure 4-12: Use the <hr > element to add horizontal lines to your page.

A horizontal rule must always sit on a line by itself; you can't add an <hr > element in the middle of a
paragraph (or other block element) and expect the rule to just appear in the middle of the block.

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dt d" >

<htnl >
<head>

<title>Horizontal Rules</title>
</ head>

<body>
<p>This is a paragraph followed by a horizontal rule.</p>

<hr >

</p>This is a paragraph preceded by a horizontal rule.</p>
</ body>
</htm >

Four different attributes help you control the display of each horizontal rule:

m Wi dt h: Specifies line width in pixels or by percentage. For example, your rule can be 50 pixels wide or
take up 75 percent of the page.

m si ze: Specifies the height of the line in pixels. The default is 1 pixel.

m al i gn: Specifies the horizontal alignment of the rule as | ef t (the default), cent er,orri ght. If you
don't define a width for your rule, it takes up the entire width of the page, preventing any alignment you set
from showing up in the display.

m noshade: Specifies a rule with no shading. By default, most browsers display hard rules with a shade. If
you include the noshade attribute in your <hr > element, the line will appear as a solid line.

This bit of HT ML creates a horizontal rule that takes up 45 percent of the page, is 4 pixels high, aligned to the
center, and has shading turned off:

<p>This is a paragraph followed by a horizontal rule.</p>
<hr wi dt h="45% size="4" align="center" noshade>

<p>This is a paragraph preceded by a horizontal rule.</p>

Figure 4-13 shows how the addition of these attributes can greatly alter the way a browser displays the rule.

ﬂHuri:ullldl Hiles - Bliciosall Inteinet Explonen M= E
|| Fite Edit Wiew Favores Teoks Help [
|| hak o Q[Y| Dysemch ot ¥

|
Thz# i a paragraph fallowed by a honzontal e
Thes i a paragraph precedsd by a benzontal nade
L . — -
] Dane [T &y Computer s

Figure 4-13: Use the <hr > attributes to better control how a browser displays the rule.

For a look at how you can use horizontal rules in the real world to highlight important content, take a gander at
Figure 4-14. The LANWrights, Inc. site uses colored hard rules to surround a key statement on the site's home
page that tells visitors exactly what the company does. The rules make the statement stand out from the rest
of the page.

{ LA.Nanhts

Netwark-Orented Writing and Consulling

bired et

LAMYrighEs, jr:_ . boned n Aetin Tesos, io dedicoted 0o rabwork-of

Eradrene], sl consul Tineg, Our projects ¥ T PETaork g,
Eechinod ogies |ll|\| a werkaty of related 1T Certifications LakPright

timaty Information o impartant techrologies, and useful resouroes to a wide range of

s offars acorates,

(Mot o

e Shrwrse

o oo Candniptions of e @B les and
ks, socted by demoratrations of recent
mlemrlupes an tha aklbing

-|,-— ruh1ru,1| irars o
aspociated Wed sitag edge

=

D = T i
Figure 4-14: The LANWTrights, Inc. Web site uses hard rules to draw your attention to important

information on the page.
Cascading Style Sheets give you much more control over the placement of horizontal rules; you can

even fancy them up with color and shading options.

Organizing Information into Lists

Lists are powerful tools for arranging similar elements together and giving visitors to your site an easy way
to hone in on groups of information. You can put just about anything in a list: from a set of instructionsto a
collection of hyperlinks or navigational tools.

HTML provides for three different kinds of lists:
= Numbered lists
m Bulleted lists
m Definition lists

Unlike the other markup elements you've seen in this chapter (which use a single element to describe a
chunk of content), lists are a little more complex. They use a combination of elements — at least two
components:

m A markup element that says “Hey browser. This is a list.”
m Markup elements that say “Hey browser. This is an item in the list.”

Lists are easy to create once you get the hang of using markup elements together. Mastering lists can also
make the more complicated combinations of elements easier to handle when you create tables and
forms.

Using numbered lists

Anumbered list consists of one or more items, each prefaced by a number. Usually, lists are numbered
when the order of the items is important.

You use the ordered list element () to specify that you're creating a numbered list, and a list item
element (<l i >) to mark each item in the list. This bit of markup defines a three-item numbered list:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>
<title>Nunbered Lists</title>
</ head>

<body>
<h1>Things to do today</hl>

Feed cat
Wash car
<l i >Grocery shopping
</ ol >
</ body>
</htm >

Figure 4-15 shows how a browser renders this markup. Notice that you don't actually have to specify a
number for each item in the list, the HT ML infers it from the markup.

ﬂ- Mumbered Lists - Microsof Internel Explored

|| File Edit View Fovories Tosis Hetp [
[iatiw o - QA Y] Dsemch Sifwote ¥
- |
Things to do today
I. Feedcat
2 Wash car
3 Grocery shoppag

. =l
& Done [| Ay Computer &

Figure 4-15: Use the and <l i > attributes to create a numbered list.

If you swap the first two items in the list, their numbers change when the page displays again, as in Figure
4-16.

Wash car
Feed cat
Gocery shopping
</ ol >

B Numbered Lists - Microsol Inernet Explore HEEB
| File Edit View Favorites Taols Help [@ |
ik v 5 - QD] DySewch [Fwcies ¥
=l
Things to do today
1. Wash car
2 Feedcat
¥ Grocery shoppag
. |
& Dane [| 2 Wy Computer T
Figure 4-16: Web browsers set the numbers for your list according to the order items appear in the

list.
You can use two different attributes with the element to control the display of any given list:

m start: Specifies what number you want the list to start with. The default starting number is 1, but if
you interrupt a list with a paragraph or other block element, and want to pick it up again later, you can
specify any number as the start number for the new list.

m type: Specifies the numbering style from the list. You can choose from five predefined numbering
styles:

o 1: Decimal numbers
o a: Lowercase letters
o A:Uppercase letters
o i : Lowercase Roman numerals
o | : Uppercase Roman numerals

This bit of markup uses ordered list elements and attributes to create a list that uses uppercase Roman
numerals and begins numbering at 5 (V in Roman numerals):

<ol start="5" type="I1">

Wash car</1li>

Feed cat

<l i >Grocery shopping
</ ol >

Figure 4-17 shows how the attributes affect the list display in a browser.

B Mumbered Lists - Microsoh Internet Explore HE B
|| File Edit View Favories Tools Help [
|Bet= o - QY Y| DSewch EFwotes |
=
Things to do today
V. Wash car
VI Feedcat
VI Grocery shoppag
I
8] Dena [1 EE Wy Compoter P

Figure 4-17: Use the st art andt ype attributes to guide the display of a numbered list in a browser.

Using bulleted lists

Abulleted list consists of one or more items each prefaced by a bullet. This type of listis commonly used if
the order of the presentation of the items isn’'t necessary for understanding the information presented.

You use the unordered list element () to specify that you're creating a bulleted list, and a list item
element (<l i >) to mark each item in the list. The following markup changes a three-item numbered list to

a three-item bulleted list:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht M 40/ 1 oose. dtd" >

<htnl >
<head>
<title>Bulleted Lists</title>

</ head>

<body>
<h1>Thi ngs to do today</hl>

Feed cat
Wash car</1li>
Grocery shoppi ng</1i>
</ ul >
</ body>
</htm >

Figure 4-18 shows how a browser renders this list with bullets instead of numbers.

n-l:lf-llll!h-.-rl Ligts . Micsosoll |nbeine Explope

| File Edit View Fovorites Tools Help [N
| bk v 5 - D A Doewch iFovoin 7|
=
Things to do today
= Feedcat
s Wash car
» Grocery shoppag
- £l
&7 Dene [| S my Compater i

Figure 4-18: An unordered list uses bullets instead of numbers to mark items.

You can use the t ype attribute with the element to specify what kind of bullet you want the list to
use:

m di sc: Solid circle bullets (the default)
m squar e: Solid square bullets

m circl e: Hollow circle bullets

The addition of the t ype attribute to the bulleted-list markup just given changes the bullets from discs to
squares, as shown in Figure 4-19. Here’s what the relevant markup looks like:

<ul type="square">
Feed cat
<l i >Wash car
Gocery shopping

n-l:l'ulll:h-.'rl Ligts . Micsosoll Inbeime Explope
| File Edit View Favorites Taols Help [= |
[ole= 5 - QA0 DYsaach (iifios 7|

|
Things to do today

= Feed cat
w Wash car
» Grocery shoppag
. |
& Dene [E ™y competar ,;_

Figure 4-19: Use the t ype attribute to change the bullet style for an unordered list.

Adding definition lists

Definition lists group terms and definitions into a single list and require three different elements to
complete the list;

m <d| >: Holds the list definitions.
m <dt >: Defines aterm in the list.

m <dd>: Defines a definition for a term.

You can have as many terms (defined by <dt >) ina list as you'd like, and each term can have one or
more definitions (defined by <dd>). The following definition list includes three terms, one of which has two

definitions:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dt d" >

<htm >
<head>
<title>Definition Lists</title>
</ head>

<body>
<h1>Mar kup Language Definitions</hl>
<dl >
<dt >SGWL</ dt >
<dd>The Standard Generalized Markup Language</dd>
<dt >HTM_</ dt >
<dd>The Hypertext Markup Language</dd>
<dd>The markup | anguage you use to create Web pages. </ dd>
<dt >XM_</ dt >
<dd>The Extensi bl e Markup Language</dd>
</dl >
</ body>
</htm >

Figure 4-20 shows how a browser displays this HTML.

& Definition Lists . Micresolt Intermet Explarer

Eile Edit View Favorites Tools Help -
=]

Markup Language Definitions

SGML

The Standard Generahred Markeup Language
HTML

The]'[:.-'prrl-:xl M.J.rkup Ll.r.g.l.:ge

The markup language you use to create Web pages
2L

The Extensible Markup Language

2] Done =2 My Computes g
Figure 4-20: Definition lists group terms and their related definitions into a single list.

If you think the items in alist are spaced too closely together, you can put two
 elements before
each</|i > or </ dd> element to add more white space. You can also use CSS styles to more carefully
control all aspects of your list display, as discussed in Chapter 11.

Creating nested lists

One handy way that HTML lists behave is to break up the display of your page and add some horizontal
depthto it. You can take such lists one step further and group a large number of related items when you
nest lists, creating subcategories. Some common uses for nested lists include

m Site maps and other navigation tools
m Table of contents for online books and papers
m QOutlines

You can combine any of the three kinds of lists to create nested lists. The following example starts with a

numbered list that defines a list of things to do for the day, and uses three bulleted lists to further break
down those items into specific tasks:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN"
"http://ww. w3. org/ TR REC- ht m 40/ 1 oose. dtd" >

<htm >
<head>
<title>Nested Lists</title>
</ head>
<body>
<h1>Things to do today</hl>

Feed cat

Rinse bow </Ii>
Cpen cat food
M x dry and wet food in bow </I|i>
Deliver on a silver platter to fluffy
</ ul >
Wash car

Vacuuminterior
Wash exterior</Ili>
Wax exterior
</ ul >
<l i >Grocery shopping

Plan neal s</I|i>
Clean out fridge
Make list
Go to store</|i>
</ ul >
</ ol >
</ body>
</htm >

Notice the pattern that the nested list uses: Each list item in the top-level ordered list is followed by a
complete second-level list. The second-level lists don't sit inside the list items; instead, they sit inside the
top-level list. Figure 4-21 shows how a browser reflects this nesting in its display of the nested list.

Things to do today

I. Feedecat
o Rmse bowl
o Open cat food
o Mie dry and wet food | bowl
o Delver on a giver platter to ﬂl.E_,r
& Wash car
L= va:w.zn miencs
@ Wash extenor
o W extenor
3 Grocery shoppeog
& Man meals
o Clean out rdge
o Make hst
o Goto store

2|
& Done [1 2 Wy compatar =
Figure 4-21: Nested lists combine two or more lists for a multi-level organization of information.

As you build nested lists, watch your open and cl ose tags carefully. Close first what you
opened last is an especially important axiom here.

Chapter 5: Linking to Online Resources

Overview
In This Chapter

m Creating links

Looking behind the scenes of URLs

Linking two Web pages

Setting up links within a Web page

Creating links to things other than Web pages

Hyperlinksconnect resources on the Web. When you include a link in your page, you give users the
capability to jump from your page to somewhere else on the Web, somewhere else on your site, or even
somewhere else on the same page. Without links, your page stands alone, disconnected from the rest of
the Web. With links, it becomes part of an almost boundless collection of information.

Creating a Basic Link
To create a hyperlink, you need three things:
m The Web address (called a Uniform Resource Locator, or URL) of the place you want to link to.

m Some text in your Web page to hang the link on. Usually, the text you attach a link to describes the
resource being linked.

m Ananchor element (<a>) to bring it all together. The element you use to create links is called anchor
element (as opposed to the link element) because you use it to anchor a URL to some text on your
page. When a user views your page in a browser, he or she can click the text to activate the link and
jump to the page whose URL you specified in the link.

Say you have a Web page that describes HTML standards. You might want to refer Web surfers to the
World Wide Web Consortium (W3C) - seeing as it's the organization that governs all things related to the
HTML standard - for detailed information. A basic hyperlink to the W3C's Web site, ww. W3. or g, looks
like this:

<p>The Wrld Wde Wb
Consortiunx/a> is the standards body that oversees
t he devel opnent of the HTM. specification.</p>

You specify the link URL (ht t p: / / www. W3. or g) inthe anchor element's hr ef attribute. The text (World
Wide Web Consortium) you include between the anchor element's open and close tags (<a> and </ a>) is
the text you hang your link on. Figure 5-1 shows how a browser displays this bit of markup.

;I iqure §5.19; Link 1o tha W3C . Blcrosoft Intemat | F.'m
| File Edit View Favarites Tools Holp [i |
ek e = v (7] 4| DaSeamch [ifFavotes |

|

The Wesld Wide Wek Cenportvam i the standards body
that oversees the development of the HTMWL specification

=zl
2] Done [= My Computer N

Figure 5-1: A paragraph with a link to the W3C.

You can also anchor URLSs to images so users can click the image to activate a link. (For more about
creating images that link, see Chapter 6.)

For a detailed discussion of the ins and outs of URLs, see Chapter 1.

Anchor elements aren't block elements

Notice, in the W3C link example, that the anchor element sits inside a paragraph (<p>) element.
Anchor elements are inline elements - they don't define blocks of text, but instead apply to a few
words or characters within a block of text. When you create a link, you should always do so within a
block element (such as a paragraph, list tem, heading, or even atable cell). Turn to Chapter 4 for
more information on block elements.

Although many Web browsers may display your anchors just fine (even if you don't nest them in block
elements), some browsers don't handle this breach of HT ML syntax very well. A good example is text-
only browsers like those on Palm devices and mobile phones, as well as those used by the visually
impaired with text-to-speech readers. These browsers have to display your pages with text and nothing
more, and they rely heavily on block elements to help them properly divide the sections of your page.
Without a block element, these browsers may not know what to do with your links and put the linksin

http://www.w3.org

the wrong place in their final display.

Understanding the Difference Between Absolute and Relative Links

As mentioned in a later section (‘Beyond Basic Links"), you can link to a variety of online resources. You
can create links to other HTML pages (either on your Web site or on another Web site), create links to
different locations on the same HTML page, or to resources that aren't even HTML pages at all (such as
e-mail addresses, pictures, and text files).

The kind of link you create is determined by where you link to:
m Anabsolute link uses a complete URL to connect browsers to a Web page or online resource.

Links that use a complete URL to point to a resource are labeled absolute because they provide a
complete, standalone pointer to another Web resource. When you link to a page on someone else's
Web site, the Web browser needs every bit of information in the URL to help it find the page. The
browser starts with the domain in the URL and works its way through the path to a specific file. When
you link to fles on someone else's site, you must always use absolute URLs in the hr ef attribute of
the anchor element.

m Arelative link uses a kind of shorthand to specify the URL for the resource you're pointing to. You
create relative links between resources on the same domain, and because the two resources are on
the same domain, you can omit the domain information from the URL. A relative URL uses the
location of the resource you're linking from to identify the location of the resource you're linking to.

Imagine that the following URLs identify documents on your Web site. The only difference between them
is the specific file they point to:

http://ww. nysite.com webdocs/ hone. ht m
http://ww. nysite.com webdocs/ about . ht n

Because both of these pagesreside on the same Web site, you can take advantage of relative URLs when
you create a link between them. If you want to make alink from home. ht m to about . ht m , you can

use this simplified, relative URL in the anchor element:

<p>Learn nore about our conpany. </ p>

When a browser encounters this link and finds that the link doesn't include a domain name,
the browser assumes the link is relative and uses the domain and path of the linking page
(http://ww. mysite. conml webdocs/) as a guide for finding the linked page (about . ht m).

As your site grows more complex and you organize your files into a variety of folders, you can still use
relative links. However, you have to provide some additional information in the URL to help the browser
find files that aren't stored in the same directory as the file you're linking from.

Use. ./ (two periods and a slash) before the filename to indicate that the browser should move up one
level in the directory structure. The notation in this anchor element instructs the browser to move up one
folder from the folder the linking document is stored in, find a folder called docs, and then find a file called
home. ht m . The markup for this process looks like this:

Docunent ati on home</ a>

When you create a relative link, the location of the file you're linking to is always relative to
the file you're linking from. As you create your relative URL, trace the path a browser must take if it starts
on the page you're linking from before it can get to the page you're linking to. That path defines the URL
you will use in your relative link.

http://www.mysite.com/webdocs/home.html
http://www.mysite.com/webdocs/about.html
http://www.mysite.com/webdocs/

Avoiding Common URL Mistakes

Every site, page, image, or other resource on the Web has its own unique URL, and even one incorrect
letter in your URL can lead to a broken link. Broken links lead to an error page.

URLs are such finicky creatures that a simple typo can lead to links that simply don't work. If you have a
URL that doesn't work, try these tactics to solve the problem:

m Check the case. Some Web servers, Linux and Unix most notably, are case-sensitive. Thus the
servers treat the filenames Bi 0s. ht 1 and bi 0s. ht ml as two different files on the Web server.

That also means that browsers must use uppercase and lowercase letters when necessary. Be sure
the case you're using in the link matches the actual case of the URL that worksin a Web browser.

m Check the extension.Bi os. ht mand Bi os. ht ml are two different files. If your link's URL uses one
extension but the actual filename uses another, your link won't work.

The importance of http:/in HTML links

You've probably noticed that browsers are designed to make it as easy as possible for you to surf the
Web. If you type www. sun. comin your browser's link window, the browser obligingly brings up

htt p: //ww. sun. com Although this technique works when you type URLSs into your browser
window, it won't work when you're writing markup for your Web page.

The URLs you use in your HTML need to be fully formed. Browsers won't interpret URLs that don't
include the page protocol. Forget the htt p: //, and your link simply won't work.

m Check the filename. If you change one part of a URL from the name of the domain to the path or
flename (say you type bi 0. ht nl instead of bi os. ht ml), you've got a completely different URL on
your hands or you've got a broken link. Enter the URL with bi os. ht nl at the end, and you're golden.
Enter the following URL, and a Fi | e Not Found error page appears in your browser:

http://ww. sun. com devel oper s/ evangcentral / bi o. ht m

m Cut and paste. The best and most foolproof way to create a URL that works is to load a page in
your browser, copy the URL from the browser's address or link field, and then paste the URL into your
HTML markup.

http://www.sun.com
http://
http://www.sun.com/developers/evangcentral/bio.html

Beyond Basic Links

In the section 'Creating a Basic Link' at the beginning of this chapter, we gave you a perfect example of
how to create a link in your Web page to a Web page (an interdocument hyperlink) on another site. You
pick a page to link to, find some text in your document to hang the link on, create an anchor element, and
you're done.

However, you can go beyond the basics when you link to other Web pages: You can create links that
direct browsers to open linked documents in new windows, link to specific locations within a Web page,
and link to things other than HTML pages, such as Portable Document Format (PDF) files, compressed
files, word-processing documents, and more.

Creating a link that opens in anew window

The Web works because you can link pages on your Web site to pages on other people's Web sites with
the simple addition of an anchor element. However, when you link to someone else's site, you're sending
users away from your own site, and you have no guarantee that they will find their way back.

An increasingly common approach to linking users to other sites without sending them away from your site
isto use HTML that instructs the browser to open the linked page in a new window. A simple addition of
thet ar get attribute to your anchor element sends the link to a new browser window instead of opening it

in the current window:

<p>The Wrld W de
Web Consortiunx/a> is the standards body that oversees
the devel opnent of the HTM. specification.</p>

When you give the t ar get attribute a value of _bl ank, that tells the browser to keep the linking page
open inthe current window and open the linked page in a new one, as shown in Figure 5-2.

e L8 View [|deacies IIIII. [-
e et ML B Lo i T R] s - -

=
T Hile W i et Lol Boky it compimra Boe ovsoptaret of Uae ETHL apecale st
B the Woeid Wids Wes Cemarilan MaroeoH ke mei Rxpliear
|| FBa Tdn Wiew Favartes Tosls Eelp
] = r—-ﬂ-_ﬂ-ﬂ n_j‘_ldm ﬁ-JEr‘_-j =¥
W3C usbeatiiitit,
ol .
Leading the Web fo itv Full Potential..
milrpt s perable kel pes
wbibe Wb vk O potermal Wi w
it
< _'c!r
AW 8 e T TTePERLTY =
il Ferm 0 Tt &l
T i et ey [T vy Comprer ==}

Figure 5-2: Use the t ar get attribute to open a new window in a Web browser to display a linked file.

This technique gives you the best of both worlds: You can link to an off-site resource without
really sending your users off site. However, many users are easily irritated when new window after new
window pops up on their screens. Use this technique with care and sparingly, or your users will leave your
site without benefiting from any links you might provide.

You can use JavaScript to control the size and appearance of pop-up windows, as well as give them
buttons that help users close them quickly. Learn more about this in Chapter 12.

Linking to specific locations in the same Web page

Just as you can use links to help your users navigate your Web site or the Web in general, you can help
users navigate on a single Web page. If you've ever seen 'Back to top' links or a table of contents section
for a very long Web page, you've seen intradocument hyperlinks at work. Creating an intradocument
hyperlink is a two-step process:

1. Identify and mark the places in your document that you want to link to.
For example, mark the top of your page or its major headings.
2. Linkto those spots.

When you create a link from one Web page to another, you use URLSs to define the location of the page
you want to link to. However, URLs apply to a whole page, not segments of a page. If you want to direct
your links to a specific place on the page, you first have to mark the spot you want to link to. You use the
anchor element with the nane attribute to make your mark:

Notice that there isn't any text between the opening and closing tags. That's because an anchor tag that
marks a spot doesn't need text to hang the spot on. Instead, you simply create an empty anchor tag and
you've created a spot in your document that you can link to.

To link to this spot, you use a slightly different URL than you've seen before:

Back to top

The pound sign (#) indicates that you're pointing to a spot on the page, rather than another page. Listing 5-
1 shows how these two anchor elements work together as part of a more complete page.

Listing 5-1: Intradocument Hyperlinks

<htm >
<head>
<title>lntradocument hyperlinks at work</title>
</ head>

<body>
<hl></ a>Web- Based Trai ni ng</ hl>

<p>G ven the inmportance of the Wb to busi nesses and
ot her organi zations, individuals who seek to inprove
job skills, or fulfill essential job functions, are
turning to HTML and XML to deliver training. W
believe this provides an outstandi ng opportunity for
participation in an active and lucrative adult and
conti nui ng educati on nmarket. </ p>

<p>Back to top</p>

</ body>
</htm >

Listing 5-1 is shorter than most documents that integrate intradocument links. It's designed
as an example of the markup you should use and how to use it.

Figure 5-3 shows how this HT ML appears in a Web browser. If the user clicks the Back t o t op link, the
browser jumps back to the t op spot - marked by </ a>.

'n|llrlr|1|f.ll.'l.lnll'lllll'lr hypatlinks at work - Microsol Infermet Ex...MB=E
|| File Edit View Favorites Tooks Halp [e |
|| oeBack = = - @ [] Rsoach [sifevoies (Phivoy | ¥

=

Web-Based Training

Grven the snpostance of the Web to busmesses and other
crgareratons, mdmeceals whe seek to impeove job shalls, or falEl
essenhial job mchons, are turnimg to HTML and X341 to dekeer
trazeng We believe thes prowmdes an outstandng opportunity for
partcpabon m e active and hierative adult and contrumg educabon
market

Back fo teg

&1 Dane [[=My Computer :
Figure 5-3: Use anchor elements to mark spots on a page and link to them.

The anchor element that marks the spot doesn't affect the appearance of the first-level
heading. You can mark spots wherever you need to without worrying about the final display of your page.

You generally use intradocument navigation for long pages that users need help navigating.

Linking to specific locations in another Web page

You can combine intradocument and interdocument links to point users to a specific spot on a different
Web page. For instance, if you want to point to a spot named descri pti ons on a page named
home. ht m on your site, the link would look like this:

<p>Revi ew the docunent
descriptions to find the docunentation specific to
your product. </ p>

Because you have to define a spot before you can link to it, you'll find that intradocument linking works
best on your own site where you create and control the markup. However, if you happen to know that a
page on someone else's site has spots already marked on them, you can use an absolute URL to point to
that spot, for example:

<p>Find out how to <a href="http://ww. | anw. conftraining/
onl i ne. ht n¥#r egi ster">regi ster for upconing training
courses |lead by LANWights instructors.</p>

When you link to spots on someone else's Web site, you're at their mercy because they control
the spots. You never know when someone will completely rework the markup and content on a page, and
your links will break if the site designer removes the spot. Be sure you check all of your links regularly to
catch and fix broken links to both Web pages and spots on Web pages.

Linking to non-HTML resources

Although links on the Web were originally used strictly for linking from one Web page to another or within a
single Web page, the uses for links have expanded significantly over time to link to a variety of other kinds
of files, including these:

m Word-processing documents

m Spreadsheets
m PDFs
m ZIP files and other compressed files

You can also use an anchor element to link to multimedia files, but there are generally better ways to
embed media clips in your Web pages. Chapter 13 covers media file linking in detail.

A great use for this kind of link is on software and PDF download pages.

Creating a file download link

Even non-Web files have unique URLs just like good old HTML pages. When you put a file on aWeb
server (regardless of its type) you can use a URL to point to it from a link. For instance, if you want your
users to be able to download a PDF file named doc. pdf and a. ZI P archive called sof tware. zip
from a Web page, you use this HTML.:

<h1>Downl oad t he new version of our software</hl>
<p>The sof t war e</ a></ p>
<p>The docunent at i on</ a></ p>

You can't be sure how any given user's browser will respond when he or she clicks on alink
toa non-Web file. The browser may prompt the user to save the file, or the browser may have a plug-in
installed that allows the user to view the file without downloading. (This is common for PDFs.) In some rare
instances, the browser may present an error message (such as a pop-up window) to let the user know the
browser can't handle the file.

To help users download files successfully, you should provide them with as much information as
possible about the file formats and any special tools they might need to work with the files. For example, to
work with the contents of a ZI P file you need WinZip or another utility; to view a PDF file, you need the free
Acrobat reader. You can make the previous download markup a litle more user-friendly by adding some
supporting text and links:

<h1>Downl oad t he new version of our software</hl>
<p>The sof t wvar e</ a>

Not e: </ b>
You need a zi p</ a>
utility to open this file.</p>
<p>The docunent ati on</ a>

Not e: </ b>
You need the free <a href="http://ww. adobe. conf
product s/ acrobat/readstep. ht M ">Acrobat Reader
to view the docunentation. </ p>

Figure 5-4 shows how a browser renders this HTML and the dialog box it displays when you click the
software link.

g ot b Ml 4
The L80 View Davesis Teals ik =
[dtmi = - (1 O] Qlemb Gifemte S (G- EH

Download the new version of our sofiware

The ppdwars
Motee Voo et 0 o sibey to cpen v fle

T Jeyumiston

Mok Vi meed $o free Arpobat Repde ic vee fwe docimsrtaiiey

Vi e T M O] B P OB
A b s el & ey oty _wdbmar b

el vl s 1 e i
17 s i oo i o .
[A

5 sl ik b v B Sl

[] cew | smem |

3] IR =TT
Figure 5-4: This browser prompts you to save or view the ZIP file.

=l

Linking to an e-mail address

In addition to linking to non-Web files to create download pages and the like, you can also link to e-mail
addresses. You use the standard anchor element and hr ef attribute, but you preface the e-mail address
you want to link to with mai | t 0: , as shown here:

<p>Send us your
coments. </p>

Although the user's browser configuration ultimately controls how the browser handles an e-mail link, most
browsers automatically open a new e-mail message window with the e-mail address you specify in the

hr ef attribute already in the To field. This is a great way to help users send you e-mail while a request or
issue is in the forefront of their mind.

Web page nai | t o links are one of the prime sources of e-mail addresses for spam
systems. If you choose to use an e-mail link as a way for users to contact you (a form is another option for
receiving feedback, as discussed in Chapter 10), consider creating a special e-mail address just for your
site feedback. You can keep the messages you receive at this address separate from your personal or
other mail, so you can more easily filter out junk mail.

Regardless of what kind of link you include in your Web page, where you place your links, the text
you anchor them to, and the clues you give your users about where a link is taking them have a significant
impact on the effectiveness of your links. Chapter 18 discusses some best practices for including links in
your overall site design.

Chapter 6: Finding and Using Images

Overview
In This Chapter
m Finding the right format for your images
m Using markup to add images to Web pages
m Creating images that link
m Understanding image maps, animated GIFs, and transparent images
m Finding images to use in your Web pages

Although the Web was once a text-heavy place where images played only a supporting role, things are
very different today. Web page designers use text and images equally to deliver important information,
direct site navigation, and of course contribute to the overall look and feel of a page. Images are a
powerful weapon in your Web design armory, but you need to use them carefully and properly or you risk
reducing their effectiveness.

When used well, images are a key element of your page design. When used poorly, they
can make your page unreadable or inaccessible.

This chapter gives you a crash course in using images on your Web pages. You find out which image
formats are Web-friendly, how to use HTML elements to add images to your Web pages, how to attach
hyperlinks to your images, how to create image maps and animated images, and how to find and edit
images for your Web page.

The Role of Images in a Web Page

Think back to the last several Web pages you've visited and consider the role images have played in each.
Images may be logos, clickable navigation aids, or display content; they may also make the page look
prettier, or serve to unify a page’s theme. A perfect example of the many different ways images can
enhance and contribute to Web pages is the White House home page at ww. whi t ehouse. gov, shown

inFigure 6-1.

Mavigation and tham e

) ¥igicomp to the Whie Howno - Bioseef et [xploser

Filw Edit Ve Foweriion Took Help F

Bl e s 0D Qe e giaw e ge G- TR
o oo | YT N

E ¥ 1" ﬁ-ﬂ_ Tlmr WVioe Pronideni Fisioey L Towrn P Lady fmwn A
L :"_"_ 7. R S . L™

I_il (Ve Lt TS ——

M‘W President Bush, Pl Chretien
Poficio i forem | Announcs Progress in Smart Border

S
BE i et Seted ister Canmis lewe ol
o v o sk vy b | AL P

Peagiders Bush, Prime Mrugter Bias S s e

[pr—— Discuss Kesping the Peace
i oot Bk Batarilary wed, "Thar wrorhd e noms e ihis date n 1BS3
el wy o Vo L whorad & Alar 1aes VT e Hiibory
Mg Lhe bl L bos g B o el S T
Bl Ul el W R R __ & — — - — d
L [v 1

Caontant
Figure 6-1: The White House Web page uses images in a variety of ways.

Spend a few moments analyzing this page, and you'll see that images play the following roles on the
page:

m For navigation: The navigation at the top of that page uses graphics with stylized text to link you to
information about the President, the Vice President, a search of the site, and more. These navigation
elements could have been text based (like those on the left-side of the screen), but using graphics to
help visitors link to key areas of the site makes it just a little prettier and helps establish an overall flow
and formal look and feel for the site.

m As content: The picture on the right side of the screen isn’t just there to break up the text on the page;
it conveys content in a way text simply can’t. The site could easily use text to describe the President
making calls to world leaders from the Oval Office with the sun streaming through the windows on a
beautiful day in Washington, D.C., but the picture captures the moment more effectively (and
concisely) than words ever could. This illustrates the many times images are better vehicles for
conveying content than text can be.

m For decoration and to establish an overall look and feel for the site: The site uses a smattering of
graphics to make the site look good and establish an overall look and feel. Notice the White House
balcony in the upper-right corner. It helps emphasize that this is the White House home page and
adds a sense of dignity and formality to the site’s look and feel. A picture of Grover Cleveland sitting
next to links to information about goings on in the Cleveland White House back in 1893 adds some
variety and visual appeal to the page.

Overall, the White House site balances images and text beautifully. Many of the images on the page
perform double-duty as both navigation tools and decorations, and the images the designer chose help
convey a consistent and appropriate look and feel for the site.

Creating Web-Friendly Images

There are a lot of different ways to create and save graphics, but only a few are actually appropriate for
images you want to use on the Web. As you work to create Web-friendly images, you have to take two
factors into account: file format and file size.

Choosing the right file format

Usually, graphic file formats are particular to one operating system or another, or even to one software
application or another. However, because you can't predict what kind of computer visitors might be using,
or what software (other than a Web browser) they have installed, you need to create images that anyone
can view with any browser. This means you need to use file formats that can be viewed whether a person
uses any version of Microsoft Windows, the Mac OS, or any of the various varieties of Linux on the scene.
Such file formats are called cross platform.

There are only three graphics formats that are appropriate for use on the Web:

m GIF (Graphics Interchange Format): GIF is the original cross-platform, application-inde pendent
image format created by CompuServe. It's acompressed file format, which means that images saved
as GIFs tend to be smaller than those saved in other file formats. However, GIF supports up to 256
colors (and that’s all, folks), so if you try to save an image created with millions of colors as a GIF, you
may lose some image quality. Generally, GIF is the best format for line art, clip art, and other types of
less-complex images.

m JPEG (Joint Photographic Experts Group): JPEG is a file format that supports 24-bit color (millions
of colors) and consequently more compleximages, like photographs. JPEG is both cross-platform
and application-independent, just as GIF is. JPEG also offers compression to make images smaller,
and a good image-editing tool can help you tweak the level of compression that you use so you can
strike the optimum balance between image quality and image size.

m PNG (Portable Network Graphics): The latest cross-platform and application-independent image file
format developed to bring together the best of GIF and JPEG. PNG provides the same level of
compression as GIF does, but supports 24-bit color (and even 32-bit color) like JPEG. Because PNG
supports such rich color and uses more advanced compression schemes than either GIF or JPEG, it's
the best of the three formats and works with any kind of art. However, Internet Explorer 4 and
Netscape 4 and older browsers don’t support it, so many designers still shy away from it.

Any good graphics-editing tool (like those discussed in Chapter 16) allows you to save your images in any
of these file formats. You can experiment with each to see how converting a graphic from one format to
the other changes its appearance and file size, and then choose the format that gives you the best results.

For a complete overview of graphics formats and how to match a format to a particular graphic, visit
Builder.com’s Graphics 101 htt p: // bui | der. cnet . coml webbui | di ng/ 0- 3883- 8- 4892140-
1. ht M and Webmonkey’s "Web Graphics Overview" at
http://hotwi red.|lycos. com webnonkey/ 01/28/i ndexla. htm .

Achieving the smallest possible file size

The fact that all three cross-platform graphics file formats (GIF, JPEG, and PNG) include file compression
capabilities should be your first clue that file size is extremely important when you create Web graphics.
Before users can view the images on your Web site, they have to download copies of those images to their
local hard drives, which means the wrong set of circumstances can make your pages so difficult to access
that visitors won't stay long enough to see your content and certainly won’t be making a return visit:

m You have several big images on your HTML page: If the graphics on your page take up several
hundreds of kilobytes (K), they will take quite a while to download regardless of the speed of a user’s
Internet connection.

http://builder.cnet.com/webbuilding/0-3883-8-4892140-
http://hotwired.lycos.com/webmonkey/01/28/index1a.html

m Avisitor has a slow Internet connection: If it takes a minute or more (a verylong time in
cyberspace) for your page to load on users’ computers, you can lose traffic. Most users don't have
that much patience, and they'll leave your page in search of one that loads faster.

The good news is you can create graphics that look good and that have areasonable file size. The few
minutes you spend optimizing your images for Web use make them more effective and help you keep the
users who visit your site on your site.

Optimizing images for the Web

As you build graphics for your Web page, you'll find yourself in a constant struggle to maintain a healthy
balance between file quality and file size. The more colors an image has, the better it looks, but the larger
its file size. As you begin to reduce the number of colors, image quality begins to decline, but so does file
size. Finding the right balance in an image is called optimizing it, and there are a variety of tools designed
to help you do just that.

The first step in optimizing your graphic for the Web is choosing the proper file format. For example, if you
try to save a complex photograph as a GIF, you'll only have 256 colors to work with, which typically isn’t
enough for a photograph. The file size might be smaller, but the quality probably won't be that great. On
the other hand, if you try to use JPEG to save some simple line art, you'll have millions of colors to work
with (that you really don't need), and your file size will typically be larger than you need.

Table 6-1 offers some very general guidelines for choosing a file format for an image type.

Table 6-1: Choosing the Right File Format

File Format Best Used For Watch Out

GIF Line art and other images with Don't use this format if you have a
few colors and less detail. compleximage or photo.

JPEG Photos and other images with Don't use with line art. Be sure that
millions of colors and lots of you don’'t compromise too much
detail. quality when you compress the file.

PNG Photos and other images with Don’t use with line art. Older
millions of colors and lots of browsers don’t support PNG, so you
detalil. may still lose Web surfers even

though PNG offers the best balance
between quality and file size.

Although many visitors to your Web site may have broadband Internet connections, many more
probably do not. The best way to ensure that your page is accessible to everyone and downloads quickly
— regardless of connection speed — is to remember the 1-second, 1K rule. If you assume that it takes 1
second for every K of information on your page to download, you can add the total file size for the HTML
file and all images on the page and get a good idea of how long your page will take to download on a slow
Internet connection. Try to keep it to 60 seconds, which is 60K, or less, and you'll be just fine.

Webmonkey has two good tutorials on trimming your image file sizes and optimizing your
entire site so it downloads faster. For a healthy collection of tips and tricks that can help you create pages
that download quickly, review “Optimizing Your Images” at
http://hotw red.lycos. com webnonkey/ 99/ 15/ i ndex0a. ht m and the "Site Optimization
Tutorial"athttp:// hotwired.lycos. com webnonkey/design/site building/tutorials/
tutorial2.htm .

http://hotwired.lycos.com/webmonkey/99/15/index0a.html
http:// hotwired.lycos.com/webmonkey/design/site_building/tutorials/

Adding an Image to Your Page

After you have an image to work with and optimized it for the Web, you need to use the correct markup to
make sure the image is added to your page. Easy enough. The image (<i ng>) element is an empty
element, sometimes called a singleton tag, which you place on the page wherever you want your image to
go.

An empty element only has an open tag, and no close tag.

The following markup places an image named t hr ee_cds. j pg between two paragraphs:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN"
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>
<title>CDs at Wrk</title>
</ head>
<body>
<h1>CD as a Storage Media</hl>

<p>CD- ROV have becone a standard storage option in today’'s conputing world
because they are an inexpensive and easy to use nedi a. </ p>

<p>To read froma CD, you only need a standard CD-ROM drive, but to create
CDs, you need either a CD-R or a CD-R/ Wdrive. </ p>

</ body>
</htm >

A Web browser replaces the <i ng> element with the image file referenced by the sr c attribute, as shown
inFigure 6-2.

B s 01 Winek: - Biiosol beas need Expleani

file Fdi Yoeow Fpesuies Toos [elp -
L =1

CD as a Storage Media

- huve becons a sandard plerage opion n ioday's compatng workd becmars they ane an mrspenmye
md eary 1o use e da

T tesd Bom w T you oddy feed & msnaderd TD-ROM ditwe, bt oo ereae CLF, you feed ether & C-F o i
CD-RW drmee

EDems 2 My Comgutn _
Figure 6-2: Use the <i ng> element to place graphics in a Web page.

Thesr ¢ attribute is very much like the hr ef attribute that you use with an anchor (<a>) element. The src

attribute specifies the URL for the image you want to display on your page. The previous example points to
an image file that sits in the same folder as the HT ML file referencing it, so the URL is relative. You'll find
that most of your links to images are relative just because you usually keep image files on your site.

You make relative links between resources (like a Web page and graphic) on the same
Web site. You make absolute links between resources on two different Web sites. Turn to Chapter 5 for a
complete discussion of the differences between relative and absolute links.

So why should you keep all of the images you reference in your HT ML on your site
with your other files? After all, you can point to any image anywhere from your HTML. Animage is just
another Web resource. There are three compelling reasons to link to images on your own site:

m When the images are stored on your site, you have complete control over them. You know they aren’t
going to disappear or change, and you can work to optimize them.

= [f you link to images on someone else’s site, you never know when that site might go down or be
unbelievably slow. You know these things about your own site.

= If you link to images on someone else’s Web site, you may very well be violating his or her copyright
(see the “Copyright matters” sidebar at the end of the chapter), and that’s just plain illegal.

Adding alternative text

Images are designed, obviously, to be seen. However, there two important reasons why your image might
not be seen:

m Users who are visually impaired may not be able to see them.
m Users with slow modem connections may turn images off.

Some search engines and other cataloging tools also use alternative text to index
images.

Although most of your users will see your images, you should always be prepared for those who won't.
The HTML 4.0 specification requires that you provide alternative text that describes the image with every
image on your page. You use the al t attribute with the <i ng> element to add this information to your
markup:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. org/ TR/ REC- ht m 40/ | oose. dtd" >

<htm >
<head>

<title>Inside the Orchestra</title>
</ head>

<body>
<p>Anmong the different sections of the orchestra you will find:</p>
<p><ing src="strings.jpg" alt="violin and sheet nusic"> Strings</p>
<p><ing src="brass.jpg" alt="trunpet"> Brass</p>
<p><i ng src="woodw nd.jpg" alt="clarinet"> Wodw nds</ p>

</ body>

</htm >

When browsers don’t display an image (or can't, in the case of text-only browsers such as Lynx), they
display the alternative text instead, as shown in Figure 6-3.

B vl e Chahonata - Bl oail kst wom et [o jlaina
Tde D68 View Dovesues Trals Vel >
| et = 4 - i D Dk et S (G- dE- EH

g
Amming e Eilconl sectivss of tee oachestr v will el
B ot
i waen
Pirass
| v
Wanchwtnde
=1
] Dueas | = ¥y Corparr

Figure 6-3: When a browser doesn’t show animage, it shows alternative text instead.

Even when browsers show an image, many (Internet Explorer 4 and Netscape 4 and later) typically show
the alternative text as a pop-up tip when you hold your mouse over the image for a few seconds, as shown
inkFigure 6-4.

3 Inside the Orchesira - Mioroseft Intermet Explarer C
Ele Edit View Egvorites Tools Help -
= |
Amaong the different sechons of the erchestra you will find
|
Y h
-
} -
h‘!"': P as
Woodwands
2] Done 2 My Computes 5
Figure 6-4: Even when a browser shows an image, it may display the alternative text as a pop-up tip
as well.

This means you can use alternative text to describe the image to those who can’t see it and to provide
additional information about the image to those who can.

The W3C’s Web Accessibility Initiative (WAI) includes a variety of helpful tips on how to create useful
and usable alternatives to visual content at www. W3. or g/ TR/ WCAGL0O- TECHS/ #qgl - pr ovi de-

equi val ent s.Chapter 18 also discusses making your site accessible in more detalil.

Specifying image size

You can use the hei ght and wi dt h attributes with the <i ng> element to let the browser know just how
tall and wide an image is (in pixels):

<inmg src="brass.jpg" wdth="72" hei ght="108" alt="trunpet">Brass</p>

Most browsers download the HTML and text associated with a page long before they download all of the
page graphics. Rather than make users wait for every bit of a page to download, browsers typically display
the text first and fill in graphics as they become available. If you let the browser know how big a graphic is,
the browser can reserve a spot for it in the display. This technique makes the transition from a page
without graphics displayed to a page with graphics displayed much smoother for the user.

Any image-editing program or even the image viewers built into Windows and Mac OS display the
width and height of an image in pixels. Also, you may be able to simply view the properties of the image in
either operating system to see how wide and tall it is.

Another good use of the hei ght and wi dt h attributesis to create colored lines on a page using just a
small colored square. For example, this markup adds a 10 by 10-pixel blue box to an HTML page:

When the hei ght and wi dt h attributes in the <i ng> element match the height and width of the image, it
displays as a blue boxin a browser window, as shown in Figure 6-5.

A Image Eloment Dasics r.1|.-.r.-r=..-. Internet Exp,.. FEE
File Ediit View Favorites Tooks Help [JEEl
=

| |
. -
2] Done || &My Computer i

Figure 6-5: A small box.

However, a change to the height and width values in the markup turns this small blue box into a line 20
pixels high and 500 pixels long:

The browser will expand the image to fit the height and width specifics in the markup, as shown in Figure
6-6.

'ﬂliuunu Efernint Basics - Micoosolt Internel Explope;

|| File Edit View Favorites Tasls Help [& |

&1 Dane [T S Wy Computer
Figure 6-6: A small box becomes a long line.

Using this technique, you can turn a single image like the blue box (only 1K in size
by the way) into a variety of lines and even boxes. Thisis a good way to ensure all of the dividers and other
border elements on your page use the same color — because they are all based on the same graphic.
Also, if you decide you want to change all of your blue lines to green, you simply change the image, and
every line you've created changes colors.

When you specify a height and width for an image that are different from the image’s actual
height and width, you rely on the browser to scale the image display accordingly. Although this works great
for single-color images like the blue box, it doesn't work well for images with multiple colors or images that

display actual pictures. The browser doesn’t size images well, and you'll wind up with a distorted picture.
Figure 6-7 shows how badly a browser handles enlarging the trumpet image from the previous example
when we double the image height and width in the markup:

 Brass</p>

A Inside the Dichestia - Bicrosel Inteonet Exploiar

|| File Edin View Favorites Taals Help [v |

3

2
5 4
H’ Brass

x

|#8] Dane I_I_EWC“'“P"" 4
Figure 6-7: Don't use a browser to resize complex images.

If you need several sizes of the same image, say a logo or navigation button, use
the largest size image to make smaller versions in an image-editing tool so you can better control the final
look and feel of the image.

Setting the image border

By default, every image has a border of 1, which doesn’t really show up until you turn that image into a
hyperlink (as discussed in the “Images that Link” section coming up). You can use the bor der attribute
with the <i ng> element to better control what border the browser displays around your image. This

markup sets the border for the clarinet image to 10 pixels:

The browser applies this border to all four sides of the image, as shown in Figure 6-8.

B i the Orehestra - Microsol Internet Exploder)i
|| File Edit View Favorites Tooks Help [|
=
Woodwinds
- |
/] Dane [i3 Wy Computer P

Figure 6-8: Use the bor der attribute to create a border around your image.

Notice that the border is black and applies to all four sides of the image. If you want to control the color of
the border, or want the border to appear differently on each side of the image, you have two options:

= Build the border into the image in an image-editing tool.
m Use Cascading Style Sheets (covered in Chapter 11).

If you use an image-editing tool to create your border, you can take advantage of the tool's features to
create a patterned border or apply a unique effect. However, the additional information in the image may
make it bigger. You’'ll need to carefully manage your image size in relation to its final appearance to be
sure it doesn't take too long to download.

If you use CSS to apply a border, your image won't get any bigger, but your border may not show up in
older browsers that don’t support CSS well. The choice you make depends on how crucial the border is to
your image (if it's very important, embed it in the image) and what browser you think your visitors use
(newer browser have better support for style sheets).

If you don't plan to make your image into a hyperlink and don’t want a border, don’t worry about
setting a bor der attribute at all. However, if you want to turn your image into a hyperlink and don’t want a
bright blue line around it, be sure to set the value of bor der to 0.

Controlling image alignment

Theal i gn attribute works with the <i ng> element to control the way your image appears relative to the
text around it. The possible values for this attribute are:

m t op: Aligns the text around the image with the top of the image.

m i ddl e: Aligns the text around the image with the middle of the image.

m bot t om Aligns the text around the image with the bottom of the image.

m | ef t: The image sits on the left, and text floats to the right of the image.
m ri ght: The image sits on the right, and text floats to the left of the image.

By default, most browsers align images to the left and float all text to the right. The following markup
shows how five different <i ng> elements use the al i gn attribute to change the way text floats around the

mouse images:

<p> <inmg src="white_nouse.jpg" alt="nouse on a white background"
hei ght ="108" wi dt h="72" align="top">
This text is aligned with the top of the inmage.
</ p>

<p> <inmg src="kid_nouse.jpg" alt="nmouse on a yell ow background”
hei ght =" 108" w dt h="72" align="m ddl e">
This text is aligned with the niddle of the imge.
</ p>
<p> <inmg src="grey_nouse.jpg" alt="grey nouse on a red background”
hei ght =" 108" wi dt h="72" al i gn="bottonf >
This text is aligned with the bottom of the image.
</ p>

<p> <inmg src="threebutton_nouse.jpg" alt="three button nouse"
hei ght =" 108" w dt h="72" align="left">
This inmage floats to the left of the text.
</ p>

<p> <inmg src="blue_mouse.jpg" alt="trackball nouse and keyboard"

hei ght ="108" wi dt h="72" align="right">
This inmage floats to the right of the text.
</ p>

Figure 6-9 shows how a browser interprets these different alignments.

B Image Element Basics - Micosoll Intermet Explone:

|| File Edit Wiew Faverltes Tools Help | 7 |

This text is aligned with the top of the image.

This text i aligned with the middle of the image.

This text iz aligned with ihe bottom of the image.
TN This image floats to the left of the text.

g This image floats to the rght of the
[text.

L & 0 o

8] Dane [3 vy Compater P
Figure 6-9: You can vary image alignment to control image placement on the page.

You may find that the <i ng> attributes don't give you as much control over your image alignment as
you'd like. One of the primary uses for tables is to better control the way images sit relative to other content
on the page. Find out more about using tables and images together in Chapter 8. In addition, CSS,
discussed in Chapter 11, includes a variety of properties you can use to better control the way your images
sit on the page.

Setting image spacing

Most browsers only leave a pixel or so of white space between images and the text or other images next to
them. You can use the vspace and hspace attributes to give your images a littte more breathing room

both on the top

and bottom (vertical space) and to the left and right (horizontal space). This HTML gives the mouse
graphic 20 pixels of white space on either side, and 25 pixels on the top and bottom:

<p>
This text doesn’t crowd the inage on top.

<i mg src="white_nouse.jpg"
hei ght =" 108" wi dt h="72" hspace="20" vspace="25"
al t="nmouse on a white background">
And this text is a little further away fromthe sides. </p>

Figure 6-10 shows how a browser adds space around the image to separate it from the tex.

W Im afe Elemant Basics - Miciosoll Inteimel Exploner

|| File Edit View Favorites Taals Help [|
|

This text doesn't crowd the image on top.

Amd this text is a Liftle further avway from the sides.

=
&7 Done [[kE vy Computar i
Figure 6-10: Thehspace and vspace attributes control the white space around an image.

The default value for hspace and vspace is 1. If you want to place images so
close together that their sides are touching, as you might for a set of navigation buttons, set the value for
these attributesto O to eliminate that extra 1 pixel of space.

Images that Link

One of the most common uses for images is as navigation tools. They are prettier than plain-text links, and
as you saw on the White House page earlier in the chapter, they allow you to include both form and function
on your page with one element. To create an image that links, you simply substitute an <i ng> element in
place of the text you would anchor your link to. This markup hangs a link on some text:

<p>Visit the WBC</p>

This markup replaces the text Vi sit t he WBC with an appropriate icon:

<p><inmg src="w3.jpg"
alt="Visit the WBC Web Site" height="72" wi dth="108" border="0">

</ p>

This creates a linked image that points to ht t p: / / www. wW3. or g. Also, notice that the alternative text now
saysVi sit the WBC Wb Sit e, tolet users who can't see the image know where the link takes them.
When a user moves his or her mouse pointer over the image, the cursor turns from a pointer into a pointing
hand (or whatever icon his or her browser uses to indicate alink), as shown in Figure 6-11.

B lrin afje Elemant Basics - Miciosoll Inteinel Exploier

|| File Edit Wiew Favorltes Tools Help | o |
H

4‘# iz the W3C Wab Sital
L —
[it e w3 v [T k& Wy Computer E

Figure 6-11: Combine image and anchor elements to create a linked image.
A quick click of the image launches the W3C Web site. It's as simple as that.

As discussed earlier in the chapter, you should set the border of any image you use in
a link to 0 to keep the browser from surrounding your image in an ugly blue line. Without the line, however,
users will need other visual (or alternative text) clues so they know an image is a link. Be sure images that
serve as links scream to the user (tastefully of course) "I'm a link." Chapter 18 discusses building a good user
interface in more detail.

Creating an image map

When you use an <i ng> element with an anchor element to create a linking image, you can only attach one
link to that image. If you want to create a larger image that connects several different links to different regions
on the page, you need an image map.

To create an image map you need two things:

m An image with several distinct areas that would be obvious to users that point to different areas on your
site.

m A set of markup to map the different regions on the map to different URLSs.

You use the <i ng> element to add the map image into your page, just as you would any other image. In
addition, you include the usemap attribute to let the browser know that there's image map information to go

http://www.w3.org

with the image. The value of the usemap attribute is the name of your map.

You use two elements and a collection of attributes to define the image map: <map> to hold the map
information and <ar ea> to link specific parts of the map to URLs. The <nap> element uses the nane
attribute to identify the map. The value of name should match the value of usermap in the <i ng> element
that goes with the map. The <ar ea> element takes several attributes to define the specifics for each region
in the map:

m shape: Specifies the shape of the region. You can choose from r ect (rectangle), circl e, and poly (a
triangle or polygon).

m coor ds: Define the region's coordinates. A rectangle's coordinates include the left, right, top, and
bottom points. A circle's coordinates include the x and y coordinates for the center of the circle and the
circle's radius. A polygon's coordinates are a collection of x and y coordinates for every point in the
polygon.

m hr ef :Specifies the URL to which the region links. This can be an absolute or relative URL.
m al t: Provides alternative text for the image region.

This markup defines a three-region map called NavMap linked to the navi gati on. gi f image:

<map nane="NavMap">

<area shape="rect" coords="0,0, 99, 30" href="honme. htm " alt="Home">

<area shape="rect" coords="102, 0, 202, 30" href="about.html " alt="About">

<area shape="rect" coords="202,0, 301, 30" href="products. htm" alt="Products">
</ map>

Figure 6-12 shows how a browser displays this markup.

0 Image Bap . Microso Iniernel Explorer

| File Edit Wiew Favorites Taols Help | = |
=

Home iF'.I:-out Us | Products

E
Figure 6-12: Image maps turn different areas of an image into linking regions.

When the mouse sits over a region in the map, the cursor turnsinto a pointing hand, just as it does over
any other hyperlink, so take advantage of the alternative text to include useful information about the link

Creating thumbnail images

There may be times when you want to make large images available to users on your Web site, but want
to give them a preview of the image and the option to view the larger image, rather than forcing them to
wait for the larger image when they first view your page. Thumbnail images use smaller versions of a
large image to link to the larger (both in file size and image size) image, as in this markup:

<p>
<img src="brass_small.jpg"
alt="trunpet thunbnail" height="98"
wi dt h="109" border="0">
</ a>
</ p>

This markup links a smaller version of the trumpet image directly to a larger version. Notice that the link
isto a JPEG file, not to another HTML page. This isa quick way to make a link to a larger image.
Another option is to create a new HTML page to hold the larger image and link to the page

brass_I| arge. ht M instead of the image itself.

<p>
<img src="brass_small.jpg"
alt="trunpet thunbnail" hei ght="98"
wi dt h="109" border="0">
</ a>
</ p>

This approach gives you the flexibility to add text and navigation to the page holding the larger image, but
of course requires that you create and maintain the page. If you only have a couple of such thumbnail
images on your site, maintaining them isn't that difficult. More than 10 or so is a different story though.
You have to decide for yourself how much additional information you want to supply with the larger
image.

Image maps have really fallen out of favor among Web designers recently because
they tend to be bulky and very difficult to manage. Even so, they're still used on the Web and they may be a
feature you want to include on your pages. A common use for image maps, even today, is to turn maps of
places (states, countries, cities, neighborhoods, and such) into linkable maps. Webmonkey's image map
tutorial atht t p: // hotwi red. | ycos. com webnonkey/ 96/ 40/ i ndex2a. ht m provides even more
details on opti- mizing your image maps and making the most of this HT ML feature.

Creating image maps by hand can be a little tricky. You need to use an image editor to identify
each point in the map and then create the proper markup for it. Most HT ML tools from (both shareware and
commercial software) include utilities to help you make image maps. If you take advantage of one of these
tools, you'll create image maps quickly and with fewer errors. Find out more about HTML tools in Chapter 16.

http://hotwired.lycos.com/webmonkey/96/40/index2a.html

Other Interesting Image Tricks

As you look around the Web, you see types of interesting image tricks at work. Two of the most popular
involve creating animated GIFs and transparent images. Neither of these activities is particularly difficult.
You just need to know how they work and then acquire the right tools.

Images often play an integral role in multimedia presentations you might add to your Web page. Be
sure to review Chapter 13 for more information on working with media.

Creating animated GIFs

An animated GIF is a collection of graphicsfiles in the GIF format that display in succession, one after the
other, just like scenes in a movie. To create an animated GIF, you bring several images together in
animation software, specify parameters such as how many times the animation should repeat, how fast
the animation should run, and if you want any special effects applied to the transition from image to image.

To create an animated GIF, you need animation software such as GifBuilder or GIF Construction Set, both
of which are shareware. These tools handle the programming (such as it is - it's not what we'd describe as
heavy lifting) behind the GIF, and help you put the pieces together.

You can visit TUCOWS at www. t ucows. comand search for "animated GIF" to access a long list of
tool possibilities. You're sure to find one that fits your budget and that works with your computer of choice.

Because animated GIFs are just GIF files with a little extra information thrown in, you reference them in
your HTML just like you would any other GIF file; that is, you use the <i ng> element. Animated GIFs may
begin with several GIF files, but they become a single file whose name you can use as the value of the

Sr c attribute.

Much like image maps, animated GIFs are becoming something of a dinosaur on
the Web. New technologies such as Macromedia Flash (covered in Chapter 13) allow you to do more
advanced animations that are interactive and include links. However, Flash isn't a free product and does
have a learning curve. If you want to quickly add a short animation to your page, an animated GIF may be
just what you're looking for. The Webmonkey tutorial entitled '‘My First GIF Animation' at
http://hotw red.lycos. com webnonkey/ htm / 97/ 14/i ndex2a. ht M walks you through all of
the steps to creating an animated GIF.

Making transparent images

Transparent images are simply graphics saved in either the GIF or PNG file format (but not JPEG) where
a color in the image is transparent. That is, the background color of whatever page the image is on will
show through where that color would have been.

Transparency helps images blend into a page, but creating transparent images does have its drawbacks:

m Although you can set several colors in a PNG image to be transparent, you can only pick one color in
a GIF.

m If you set the color on the remote edge of a GIF to transparent, the edge may appear jagged against a
different color background. This happens because what the human eye perceives as the edge
between two colors is really a blend of several shades of one color into the next. Black and white isn't
really just a transition between black and white, but instead requires several shades of gray. When
you make a single color transparent, the other shades are still there.

Just about any image-editing software, from shareware to commercial, has utilities for creating transparent
images. Look in the help or documentation for your tool of choice to find out how to use the transparency
feature. Also, because transparent images are just regular image files, you use the image element to
reference them in your HTML pages.

http://hotwired.lycos.com/webmonkey/html/97/14/index2a.html

Transparency works best on line art that doesn't have a lot of colors so there is less
shading to work with. If you have more complicated graphics that you would like to blend in with your page
background, consider making the graphic background match that of the page.

Finding Sources for Images

Of course, if you want to use images in your Web pages, you need a source for all of those images. If you
aren’t a modern-day Rembrandt (or Picasso or even Warhol), that doesn’t mean you can’t acquire quality
images without spending an arm and a leg to do so. You have several options for reasonably priced
(including free) images:

m Online: There a variety of online image repositories that house free graphics you can use for personal
and even business Web sites. Search your favorite search engines for “free Web graphics,” and you'll
be presented with a very long list to get you started. However, because everyone can access these
graphics your site may lose some of its uniqueness, or you may have a hard time finding images that
fit your needs.

m Photo and clip art CDs: There are several photo and clip art CD vendors that will sell you entire
collections of graphics for a low cost (even as little as $25 a CD). These images are usually high
quality and come in a variety of formats so you can use them for both print and Web work. Visit
www. pr of ot 0s. comfor a list of companies that specialize in selling images on CD-ROM. In addition,
www. i St ockphot 0. comis a great resource for free stock photography.

When you locate images either for free or for a fee, be sure to double check the licensing
agreement for those images. Some images are only free for personal use and require that you pay a fee
for business use. Some clip art and photo CDs only allow you to use the images in print or on the Web, but
not both. When in doubt, ask the person or company providing the art what they will allow you to use the
art for.

m Scanners and digital cameras: You can capture your own images using a scanner or a digital
camera. If you have art, drawings, documents, or other art that you would like to incorporate into your
site, just scan them. You can take pictures of products, a company office, people at work and at play,
and more with a digital camera to create your own compelling images for your site.

m Create your own: Evenif you haven't done much drawing before, try your hand at creating your own
art. Today's software packages provide you with powerful collections of tools for creating original art.

When you pay a graphic artist to create any piece of customized artwork — from a
company logo to specialized charts or presentation templates — always be sure to get copies of the
artwork in digital format, preferably TIFF format. If you want to use this artwork online (or for any other
digital purpose later on), you'll get a much clearer image if you work from the original digital version
instead of scanning a print version. Also, be sure that you retain all rights to any version of the artwork —
print, electronic, otherwise — so you don’t have to secure the artist's permission to use it over and over
again.

This chapter really only scratches the surface of what you can do with Web images and how to use
them effectively as part of your page and site design. Although you can find out everything you need to
know to get started using images in your pages, the information in this chapter is really only the tip of the
iceberg. If you want to delve deeper into the ins and outs of Web graphics, consider reading Web Design
For Dummies by Lisa Lopuck. This book can help you transition from a simple user of graphics in Web
pages to a master of Web images and Web design.

Copyright matters

Whereas you might be tempted to download an image from someone else’s Web site to use on your
own, or simply make a link to that image, don’t. Just about everything on the Web is copyrighted these
days, and that includes any original work you've done. Even if the owner of some text or an image
doesn’t apply for a copyright, by the very nature of creating an original work, he or she owns it. Many
sites, especially education, science, and museum sites, will allow you to borrow their images, but only
if you properly attribute them on your page.

The bottom line about copyright is if you violate it, you're breaking the law — which is bad in so many

ways. Don't ever represent someone else’s work as your own, or use someone else’s work without
permission, and you’ll be sure to stay on the right side of the copyright law.

Much of the Web’s content is protected by copy-right, but there are many images paid for with
taxpayer money, or whose copyrights have long expired (think works and images owned and
managed by the federal government) are in the public domain and free for your use. Before you
assume something is in the public domain, however, look closely on the site for a copyright notice, and
be sure to send e-mail to the site’s owners if you are at all in doubt. PDImages.com

(wwv. pdi mages. conj isa wonderful resource for beginning the search for copyright-free images
available in the public domain.

Chapter 7: Top Off Your Page with Formatting

Overview
In This Chapter
m Using color in HTML
m Working with page colors and backgrounds
m Changing font display
m Adding text treatments

It's amazing what a little color and text variation can do to liven up a Web page. You can turn a plain page
into a striking work of art with a few carefully placed text treatments. Color can bring attention to important
information on your site, and the right font can emphasize your text’'s message.

HTML includes a healthy collection of elements, which you can use to control the background, colors,
fonts, and text sizes on your Web page. In this chapter, you learn how to spruce up your pages a bit by
using the HTML formatting elements.

Because HTML is really a language for defining document structure, not a formatting language, its
built-in formatting capabilities are basic. After you master HTML formatting you may find you want to do
even more with the look and feel of your pages. Cascading Style Sheets (CSS) is a style-definition
language for HTML desighed to let you do just that — take your Web page formatting to the next level.
Chapter 11 shows you how to use CSS to set page margins, attach background images to different blocks
of text, create borders around your text, and more.

Defining Color in HTML

You use different combinations of HTML elements and attributes depending on where you want to make a
color change — in your entire document, in a table cell, or to a chunk of text. Even so, the notation that defines
colors in HTML is the same, regardless of which elements and attributes you associate with the color.

HTML gives you two different ways to specify a color:
m Byname (you choose from a limited list)

m Bynumber (harder to remember, but you have many more options)

Color names

The HTML specification includes 16 color names you can use to define colors in your pages: Aqua, Black,
Blue, Fuchsia, Gray, Green, Lime, Maroon, Navy, Olive, Purple, Red, Silver, Teal, White, and Yellow. Because
these names are part of the specification, you can be confident that any and every browser can recognize
them and apply the correct color to your page display.

If you want to see how your browser displays these different colors, visit
www. ht Ml hel p. com ref erence/ ht M 40/ val ues. ht ml #col or.. If you can, view this page on two or
three different computers to see how the browser, operating system, graphics card, and monitor can subtly
change the display.

If you're looking for burnt umber, chartreuse, or salmon, you’'re out of luck. A box of 64 crayons this list is not.
Don’'t despair; the artist in you won'’t be quashed. The hexadecimal color notation system gives you what you
need to use any color (even burnt umber) on your Web page.

Hexadecimal color codes

Every color can be defined as a mixture of red, green, and blue (RGB). Monitors display colors in RGB, and
hexadecimal notation gives you a way to convey a color’'s RGB values to a Web browser. If you know a color's
hexadecimal code (often called a hex code for short), you have all you need to use that color in your HTML

page.

Hexadecimal notation uses six characters — a combination of numbers and letters — to define the amount of
red, green, and blue in any color. Table 7-1 shows the hexadecimal equivalents for each of the 16 color
names. Every color out there has a hex code like these.

Table 7-1: The 16 Color Names with Their Hex Codes

Color Hex Color Hex Color Hex Color Hex Code
Name Code Name Code Name Code Name
‘ Aqua ‘ #0OFFFF ‘ Gray ‘ #808080 ‘ Navy ‘ #000080 ‘ Silver ‘ #C0COCO
Black # Green #008000 Olive #808000 | Teal #008080
000000
‘ Blue ‘#OOOOFF ‘ Lime ‘ #00FF00 ‘ Purple ‘#800080 ‘ White ‘ #FFFFFF
‘ Fuchsia ‘#FFOOFF ‘ Maroon ‘ #800000 ‘ Red ‘#FFOOOO ‘ Yellow ‘ #FFFFOO

Notice the pound sign (#) before each of the six-digit hex codes. When you use hexadecimal code to
define a color, you should always precede it with a pound sign. So, this HTML uses a color name to specify
that some text in a paragraph should be blue:

<p> Some of the text in this paragraph is blue.</p>

This HTML uses a hex code to do the same thing:

<p> Some of the text in this paragraph is blue.</p>

You find out all about which elements and attributes you use to apply color to different parts of
your HT ML page later in the chapter.

Finding out any color’s hex code

Of course, you can'’t just wave your magic wand and come up with the hex code for any color. But that doesn’t
mean that you can'’t find out through less magical means. Color converters follow a precise formula that
changesa color's standard RGB notation into hexadecimal notation. Because you have better things to do with
your time than compute hex codes, you have several options for finding out the code for your color of choice,
none of which require you to use a calculator:

m On the Web: Two good sources for hexadecimal color charts are vwwv.
hypersol utions. org/ pages/rgbhex. ht mi and ww. f ast boot. com col or_chart.htm .
You simply find a color you like, and type the hex code listed next to it into your HT ML.

m Using a converter: If you already know the RGB percentages for a particular color, you can plug them
into an online converter at ht t p: / / www. uni vox. cont hone/ support/rgb2hex. ht nl to get the
hexadecimal equivalent. For example, the RGB percentages for nice sky blue are 159, 220, and 223. Plug
those into the converter, and you get the equivalent hex code #9FDCDF.

m Using image-editing software: Many image-editing applications, such as Adobe Photoshop or Jasc
Paint Shop Pro, display the hexadecimal notation for any color. Even Microsoft Word’s color picker shows
you hex codes for colors in an image. If you have an image you like that you want to use as a color source
for your Web page, open the image in your favorite editor and find out what the colors’ hex codes are.

Unlike the more familiar decimal system that uses base-ten numbers to represent all
possible numbers, the hexadecimal system uses base 16. If you want to know more about the hexadecimal
system or find out how to convert numbers from decimal to hexadecimal, visit
http://mathforumorg/library/drmath/vi ew 55830. htm .

http://www.univox.com/home/support/rgb2hex.html
http://mathforum.org/library/drmath/view/55830.html

Setting Colors and Backgrounds for Your Entire Page

The<body> element contains the guts of your Web page, so when you want attributes (namely colors
and backgrounds) to affect your entire Web page, the <body> element is the element you need to deal
with. You can use the <body> element attributes to do the following:

m Define the text color for your entire Web page.
m Specify the different colors for links in your Web page.
m Set a background color for your Web page.

m Attach a background image to your Web page.

Changing text color

By default, most Web browsers display the text on a Web page in black. Some users may change their
browser preferences to display text in another color, but most of the time, you can expect users to see
black text against a white background on your page unless you specify otherwise.

You use the t ext attribute with either a color name or hexadecimal value in the <body> element to set
the color for the text on your Web page. The following markup uses one of the 16 color names to set the
page text color to white:

<body text="white">

This code uses the hex code to do the same:

<body text ="#FFFFFF>

Many Web browsers allow users to define their own color settings and override yours. You
can expect about 90 percent or so of your users to see the colors you've defined and be content with
them, but the other 10 percent or so will want their color choices to override yours.

You should coordinate your text, link, and background colors so they all work well together. If
you set your background text to black but forget to set your text color to a lighter color, your text won’t show
up onthe page. Conversely, light text and link colors can be lost on a white page.

Changing link colors

You've probably noticed when you visit a Web page, click a link, view the linked document, and return to
the linking page, that the link may be a different color than it was before you clicked it.

The change in link color is your Web browser’'s way of giving you a visual cue of which links you've clicked
recently. Each browser has default settings for the different colors associated with each link state. For
example, both Internet Explorer and Netscape use some shade of bright blue to highlight links you’ve
haven't yet visited. You can use the following attributes with the <body> element to control those colors

for your page.
Links come in three states, and you can modify each of them using an attribute:

m Link: The user hasn't clicked the link or recently visited the resource it points to. The | i nk attribute
defines this link’s color.

m Active link: The user just clicked the link, but the browser hasn’'t opened the page yet. Links are
active for a second or two (maybe a few more on a slower computer and Internet connection) before

the browser displays the linked document. Define the color of this kind of link with the al i nk attribute.
m Visited link: The user has recently visited this link. The vl i nk attribute defines this link’s color.

The following HT ML markup snippet makes all the links on a page silver, all the active links teal, and all
the visited links blue:

<body link="silver" alink="teal" vlink="blue">

This next HTML line uses hexadecimal codes to define the same color settings:

<body | i nk="#COCOC0O" alink="#008080" vl ink="#0000FF">

You may have noticed that the links on some Web sites don't seem to be underlined. All browsers
display hyperlinks as underlined by default, and HTML doesn't provide an attribute or other method for
turning off link underlining. The removal of lines under links isn't magic; style sheets give you more control
over link display and behavior than these HT ML attributes do. Turn to Chapter 11 to learn more about style
sheets.

Background colors

Just as you can control text and link color, you can control the background color on your page. Add the
bgcol or attribute to the <body> element to set the background color for the page. This HT ML sets the
background color to black:

<body bgcol or ="bl ack" >

This HTML uses the hexadecimal code to do the same:

<body bgcol or ="#000000" >

Bringing all of the colors together

The markup in Listing 7-1 combines all the color-related <body> attributes to create a page with a black
background, white text, silver links, teal active links, and blue visited links:

Listing 7-1: Using<body> Element Attributes to Control a Page’s Colors

<htm >
<head>
<title>Page Colors</title>
</ head>
<body text="white" link="silver" alink="teal" vlink="blue" bgcol or="bl ack">

<p>The attributes in the docunent body el enent define the colors the
browser uses to display text on the page.</p>
<p>This l ink is silver before it is clicked, teal
when it is clicked, and blue after it is clicked.</p>
</ body>
</htm >

Figure 7-1 shows how a browser displays this HTML. You can’t actually see the colors in this figure, but
you should get a good idea of the effect these attributes will have.

&1 Done [[k= My Computor 7
Figure 7-1: Use the <body> element attributes to define the colors on your Web page.

Adding a background graphic

In addition to setting a simple background color for your page, you can also specify a graphic to act as a
background image for your page using the backgr ound attribute with the <body> element. This HTML
assignsback. gif asthe background image for the page:

<body background="back. gi f">

A background image can be as small or as large as you like. Web browsers automatically repeat (or tie)

the image across and down the page to fill in the background. Figure 7-2 shows the background image
back. gi f, which is a 2-inch-by-2-inch square:

Figure 7-2: A back-ground image can be any size; the browser tiles it to fill in the entire page
background.

A browser has to download any background image before it can display it behind your page. Keep
your background images small. A 2-inch by 2-inch graphic will load much faster than a 6-inch by 6-inch
one, and the effect will be the same.

When you add the backgr ound attribute to the <body> element from Listing 7-1, the complete element
with all its attributesiis:

<body text="white" link="silver" alink="teal" vlink="blue" bgcol or="bl ack"
background="back. gi f">

Figure 7-3 shows how the browser tiles the small back. gi f image to fill the entire page.

W Figure 73: Page Colors and Backgiownds - Microsedt Intern,., M= E

nk 1f siver before of o eheloed, tead when of 1# cheleed, and Blue

ier 215 chcked

el Dane [iE Wy Compater 7
Figure 7-3: AWeb page with both colors and a background image defined.

Notice that the HTML for the <body> elementincludes the bgcol or attribute even though the

backgr ound attribute defines an image background for the page. A background image always displays
instead of a background color, unless a user has turned off the image display settings in his or her
browser.

If a browser can’t display images, it displays the background color. Be sure to define a background
color as a fallback to a background image, especially if your text is light and you're counting on the
background to make the text readable.

Just as you have to coordinate text colors and background colors, you have to coordinate text
colors and background images. In Figure 7-4, the background image is light, as are the text and link
colors, so the text is unreadable.

B Figure 74: Page Colors and Backgiounds that Dont Coordi,., M E3

TFile Edi View Foveres Tools ol

| oBack w =+ D[() Dfewch [Fwcie Peoy e ¥
2
=

Done [[K= wey Computer 2

Figure 7-4: Be sure to coordinate your text colors and background colors, or your page may be
unreadable.

Working with Font Faces, Colors, and Sizes

All the attributes that work with the <body> element to set color and backgrounds for your page apply to

the entire document. Sometimes you may want to apply color and other text formatting to specific parts of
your page instead of the entire thing. Enter the <f ont > element (both literally and figuratively).

You can use the <f ont > element and its related attributes to control three different aspects of a section of
text on your page:

m Font face
m Font color

m Font size

Defining the font face

Every browser has built-in settings that specify which font it uses to display various elements such as
paragraphs and headings. Most browsers use some variety of Times, such as Times New Roman, or a
similar serif font to display almost all text, but when you combine the <f ont > element with the f ace
attribute, you can change that.

This HTML markup specifies that the first paragraph on the page should display in Arial, and the second
paragraph should display in Courier:

<p>
This text is displayed in Arial.
</ p>

<p>
This text is displayed in Courier.

<p>

Figure 7-5 shows how a browser renders this HTML.

nl igure I Fonl Faces - Miciosolt Inteing Explaier
|| File Edit View Favorites Teols Help 3
| weBack = = < [O | D Sech [siFavoibe Py | [™
O |
This test is displayad in Anal
This text is displayed in Courier.
= z
{8 Dane [i3 My Computar !

Figure 7-5: Use the <f ont > element and the f ace attribute to change the font face for sections of
text on the page.

If you're wondering about the attribute that changes the font face of a whole HTML page at once, we've
got bad news for you. There is no such attribute. HT ML doesn’t include one, so if you want to set the font
face for the entire page to something other than the browser default, you have to use the <f ont > element
andf ace attribute on every block element.

Refer back to Chapter 4 to find out more about the difference between block and inline elements,
and how you use them together.

The<f ont > element is aninline element, so you can't use a <f ont > tag at the beginning of the page

and close it at the end and get predictable results across several browsers. It may be tedious to set the
<f ont > tag on every block element, but your results will be more consistent across browsers.

A good HTML editor (discussed in Chapter 16) can make the process of applying a font face to each
block element much easier, or you can use a style sheet (discussed in Chapter 11) to define a font face
for your entire document.

Applying font color to pieces of text

You can apply color to any chunk of text in your document using the <f ont > element and the col or
attribute. This HTML changes the font color twice in the same sentence, once to silver and once to white:

<p>You can change font color in the m ddle of
paragraphs if you like.</p>

Figure 7-6 shows how this affects the text display in a browser.

0 igure 76: Font Colors - Mictesol Inernet Explores
|| Fite Edit View Favorlies Tosls Help | a2 |
[| Bk = = - O[] | DySewch [slFmoies (Fstoy | The ™)
[|
You can change i the middle of i yous Hie
. |
/i8] Dann [i3 My Computer v

Figure 7-6: Use the <f ont > element and the col or attribute to change the font color for sections of
text on the page.

Notice that the white text doesn’t show up on the page at all, because the page background is
the browser’s default white. Use the <f ont > tag with the col or attribute carefully, or your page may be
unreadable.

Setting the font size

The last attribute you can use with the <f ont > element to change the appearance of selected text is the
si ze attribute. Most browsers support sizes 1 through 7, with 1 being the smallest and 7 being the largest.
This HTML applies each size to a different line of text in a paragraph.

<p>
Font size 1

Font size 2

Font size 3

Font size 4

Font size 5

Font size 6

Font size 7

</ p>

Figure 7-7 shows how a browser displays these different font sizes:

JI igure T35 Font Sires - Miciosoll Intemel Exploier

|| File Edit View Favorites Teols Help [w2 |
[SeBack > = - Q[G | DySemch [SiFwcies Py | [*
E
Ford vem |
Foed sexe 1
Fonk mee 3
Font sixe 4
Font size 5

Font size 6
Font size 7
|

& Dane [[k& My Computur 7
Figure 7-7: Use the <f ont > element and the si ze attribute to change the font size for sections of
text on the page.

By default, most browsers display text in size 3. In addition to simply setting the font size number that you
want to use as the value for the si ze attribute, you can also use positive and negative numbers to define
font sizes relative to the default text size. For example, this HTML sets the size of one paragraph to one
size above the default size and a second paragraph to one size following the default size.

<p>
0One size smaller than the default

The default font size

0One size larger than the defaul t

</ p>

Font sizes set this way are called relative font sizes. Conversely, font sizes that just use a
number to define size are called absolute font sizes because they specifically define a font size instead of
using arelative measurement. Figure 7-8 shows how a browser displays the relative font sizes.

JI igure 78 Relative Font Sizes - Micoosofl Internet Explores | - | O]]
|| Fila Edit View Favorites Teols Halp [+ |
(oot = = - Q[| SXSemch [Sifmoie (Fhion | (5= ¥

|

Dme pore smalles than ke dafsull
The default font pze
Oive size lrger than the default

x
1] Done rl_ﬂm Compuater 7
Figure 7-8: Relative font sizes use positive and negative numbers to set font size relative to the
browser’s default font size.

Just because you can do something . ..

The<f ont > element and its three attributes — f ace,col or, and si ze, — give you a lot of power
over the way your page displays. However, just because you can do something (for example, use 50
colors, varying font sizes and faces, and add wild backgrounds) doesn’t necessarily mean you should.
When you use formatting carefully and in moderation, you can make your content have more impact
and even enhance its meaning. If you use formatting just because you can, you may well drive users
from your page before they even read a word of what it says. If you think of colors, backgrounds, font
sizes, and other formatting tools as ways to augment your page, you'll be on the right track. Chapter
18 includes other tips on creating a good experience for your site’s visitors.

If you assume that the browser’s default font size is 3, then a font size of -1 is equal to a size of 2, and a

font size of +1is equal to a size of 4. Does the browser display size 2 and -1 as the same thing? What
about size 3 and the default size? Or +1 and 4? Here’s some HTML that uses these to define size:

<p>
One size smaller than the default

Font size 2

The default font size

Font size 3

0One size larger than the default

Font size 4

</ p>

Figure 7-9 shows how the browser interprets these size specifications.

JI igure 70 Relative and Abzolide Font Sizes Together - Mi. M= E
| File Edit Wiew Favorites Taols Help K
ik voop = G [1|y Sheach': [l Fevolid [GGy | (3557
H
Ome mme smafles 1han ike defauh
Pont sims 1
The default font nze
Font mee 3
One size larger than the default
Font size 4
- |
i) Dona [[= wy Computer 3

Figure 7-9: You can often get the same results using relative font sizes or absolute font sizes.

So, which font size scheme do you use? Absolute font sizes are easier to use, but relative font sizes
are more flexible. When a user increases or decreases his or her browser’s default font size, relative font
sizes grow and shrink as well. Some browsers expand and shrink both absolute and relative font sizes as
the default font size changes, but not all of them do. For maximum flexibility, use relative font sizes. You
can also use CSS for even greater control over your font sizes. Turnto Chapter 11 for more information.

Boldface, Italics, and Other Text Treatments

Text color and font changes are only one way to emphasize bits of text or make them stand out. In addition
to the <f ont > element, HTML has a nice collection of elements you can use to apply treatments such as

boldface, italics, underlining, and more to the text on your page. These treatments can be broken into two

categories:

m Style elements: Much like the <f ont > element, these elements simply apply formatting to text on the
page but don't describe anything about the text (such as the text is in italics because it is a book title).

The style elements include:

o

o

o

(@]

o

The markup in Listing 7-2 shows all these elements in use in an HTML page. Notice that they are all inline

: boldface text

<bi g>: big text, usually one size larger than the text around it

<i >:italicized text

<s>: strike-through text

<smal | >: small text, usually one size smaller than the text around it
<stri ke>: strike-through text

<tt >: teletype text like a typewriter might create

<u>: underlined text

Phrase elements: These elements provide more information about some text in your page
(such as identifying it as computer code) and the browser formats the text accordingly (text
marked as code is displayed in a monospaced font).

<abbr >: an abbreviation
<acronyn®: an acronym

<ci t e>: acitation

<code>: computer code

: deleted text

<df n>: adefined term

<emnr: emphasized text

<i ns>: inserted text

<kbd>: text to be input on a keyboard or other device
<sanp>: sample output

<st rong>: strongly emphasized text

<var >: avariable

elements, which means you need to use them within a block element like a paragraph, heading, or list

item:

Listing 7-2: Text Treatments at Work

<h1>Styl e el ements</ hil>

<p>bol df ace t ext </ b>

<bi g>bi g text </ bi g>

<i>italicized text</i>

<s>strike-through text</s>

<smal | >smal | text</small>

<strike>strike-through text</strike>

<tt>tel etype text</tt>

<u>underli ned text</u>

</ p>

<h1>Phr ase el enent s</ hl>

<p><abbr >an abbrevi ati on</ abbr>

<acronympran acronynx/ acronyne

<cite>a citation</cite>

<code>conput er code</code>

del et ed t ext </ del >

<df n>a defi ned ternx/df n>

<enmrenphasi zed t ext </ enm

<i ns>i nserted text</ins>

<kbd>t ext to be input</kbd>

<sanp>sanpl e out put </ sanp>

strongly enphasi zed text

<var >a vari abl e</ var >

</ p>

Figure 7-10 shows how a browser interprets these different elements. Notice that many of them look the
same, even though the elements are different.

A Figure 7-10 Text Treatments - Bicoselt Inteinet Explorer M= B
| Fite Edin View Favorires Toois elp [EE
[Back = = - @ [f] 2 DSemch [Favniss Jhmay = ¥

Style elements -

haldface text
g text
tiahetzed fext
stk eoshrenshy tee
srall Lext

telaLyps CaxE
underhoed texm

Phrase elements

an abbrevabon
& ACTOTF

a cifation
computer cods
hetetecHbeat

a difimed term
enpliaared toxe
mserted texd

TeExt to be imput
Aasple oucpar

strengly emphasized text £
avariable =l
[&1Dane [T &My Computer -
Figure 7-10: Many of the font style and phrase elements display the same way in a Web browser.

Deciding on the Right Text Elements for the Job

So why does text described with <st r ong> look the same as that described with ? Bottom line: You
have only so many ways to format text. Your browser really has only bold, italics, underline, and
strikethrough to work with. Given that limitation, which elements do you use to apply text treatments to your
text? After all, it's easier to type than <str ong>.

If you're practical about it, you have all the elements you need to format your text in the style elements.
However, when you use phrase elements, you provide additional information about the text in your
document, and that may come in handy one day when browsers have a wider array of formatting
capabilities.

For example, deleted text currently looks the same as struck-through text, but eventually you
may be able to toggle a browser's view to show and hide deleted text. HTML purists tend to believe you
should always be as accurate in your markup as possible.

In the end, the choice is yours. If you take the time to accurately describe your text, it may pay off in the
future. On the flip side, you can use basic formatting elements to create the display you're looking for - and
that will serve your needs as well.

Part Ill: Taking HTML to the Next Level

In This Part:

Chapter 8: HTML Tables
Chapter 9: HTML Frames

Chapter 10: HTML Forms

In this part. ..

Part Ill is where you move from basic, simple HTML markup to more complex HTML markup concepts
and structures. Discover the wonder and majesty of HTML tables, which you can use to organize and
manage all kinds of text and graphical data. This part explains HTML frames, which let you break up Web
pages into logical areas and manage display separately for each such area — often for stunning visual
effects. You also get a look at using HTML forms to organize, format, solicit, and handle user input on your
Web pages — techniques that can turn your Web pages into a tool for two-way communications with your
users. The chapters in this part help you kick your Web pages up a notch!

Chapter 8: HTML Tables

Overview
In This Chapter

m Understanding table benefits

Mapping a table design

Building simple tables

Creating complex table structures

Table tips and techniques

Most Web pages contain at least one table — some even nest tables within tables. Traditionally, tables
display data; HTML tables, however, are more commonly used to control layout. You can arrange
everything from text to images on your pages, efficiently and attractively, in HT ML tables.

This chapter provides you with step-by-step instructions for creating and using HT ML tables. In addition, a
list of our favorite tried-and-true tips and technigues can help make the whole process quicker.

What Tables Can Do for You

Traditionally, tables displayed data in a format that's easy to read and understand. HTML changed all that.
You may not realize it, but tables are used in a lot of Web sites. Sites such as Amazon, eBay, Yahoo!, and
Google all use tables to display their content; but you can't see these tables. Invisible tables dominate the
Web. The idea is this: Use tables to arrange items on your Web page, and then be sure to turn the borders
off so the user cannot see the table.

By nature, Web pages start out linear; tables allow you to step out of that linear box and put
text and images in the most interesting places in your layout.

You can use tables in a couple of ways:

m Traditional (ho-hum) method: You can define table or individual cell widths, producing a table that
won't resize when users resize their browser's windows. Some designers prefer to use tables for the
traditional purpose - to present data - a straightforward, balanced approach that's easily tackled.

m Presentation-focused (wow) method: You can define table and cell width using percentages,
thereby allowing the table to resize when users resize their browser windows. Most designers are
doing more creative, complex tricks with their tables.

Although this chapter covers all aspects of HTML tables, it focuses on layout tips and techniques.

Using tables for layout can result in rather complex structures, as seen in Figure 8-1. (Some other
examples of complextables are viewable at wwv. amazon. comand ww. yahoo. com)

L% AL

Fiéfjre 8-1: This Web page uses three different tables for layout. Each table is numbered.

After you open these Web pages in your Web browser, take alook at each one's HTML source code
(try ViewiSource from your menu bar). Observe how complex the markup is, and mark ye well when the
markup looks haphazardly arranged (alas, if only they'd asked us . . .).

Equally effective are the Web pages that use the less-is-more approach. Some design models keep the
interface simple - therefore easy to use. Figure 8-2 illustrates the simple approach.

Huitia Bt Dt Vil

Figure 8-2: This Web page uses one simple table with three cells for its layout.

For another example of a Web site that uses a simple table to arrange navigation, visit wwv. googl e. com

Introducing Table Basics
To understand the complexity of HTML tables, you must first understand their basic elements
m Borders:Every basic table must always have exactlyfour borders that make up a rectangle.
m Cells:These are the individual squares within the borders of a table.
For example, even though the first table in Figure 8-3 has nine cells, it has four borders.

m Cell span: Within that four-walled structure, you can delete or add cell walls (as shown in the second
table in Figure 8-3). When you delete cell walls, you require a cell to spanmultiple rows or columns
— and that’s exactly what makes a table a flexible tool for layout.

Coll Cadl Coll that spans multiple columns
I I

T
Table border Cell that spans multiple rows

Figure 8-3: After you delete a few cell walls, an HTML table might not look like much of a table at all,
but it’s perfect for laying out Web page elements.

Cell spanning and cell width are different things. When you span cells, you add or delete cell walls
(merge cells), and when you increase the width of a cell, you just adjust the width of that cell.

Sketching Your Table

Tables can become complex, and they need to be carefully planned. Mapping to the nearest pixel can get
rather tedious, and it could take several attempts, but it's an essential step in designing a well-laid-out

page.

Start with a general idea and slowly plan your layout until it becomes more solid and specific. Follow these
basic steps:

1. Grab (believe it or not) a sheet of paper and a pencil so that you can sketch out your ideas.
Make sure that you have a general idea of where you want everything to go on your page.
2. Evaluate what to include in your Web page and come to a firmer decision on the layout.

This way, you can begin to determine how many columns and rows you'll need, the width of the
table and cells, and whether to make any cells span rows or columns. Here are some things to
decide:

m Whether the table will be centered, left aligned, or right aligned.

= Whether you want to include hyperlinks, and where you might want to include them. The
image in the top of the table in Figure 8-2 provides a hyperlink to another Web site, and that
image is 294 pixels by 94 pixels.

3. Figure out the pixel dimensions of any images you want to use, for example:

= Where and how site navigation tools should appear. In Figure 8-2, to the right of the logo,
there’s a list of images used for navigation, and the greatest width value is 190 pixels. Don’t be
concerned with the height of these images; you don’t have to define cell or table height.

m Where the main logo should go, and what size it should be. For example, in Figure 8-2, the
logo is the main focal point. Its dimensions are 400 pixels wide by 302 pixels tall.

The point is to make sure that the table fills a browser window nicely without forcing the
user to scroll left and right to see everything. We think it's best to let the contents of your table
determine the cell height; image height isn’t as important because users are used to scrolling
up and down Web pages but may get frustrated if they have to scroll left and right to read
content.

If you opt for a simple approach, each main element (logo, hyperlink image, and navigation) will have its
own cell. In Figure 8-2, that means only three cells. If you have only a few cells, you'll probably have to
span the cells so the contents fill the width of your page.

Depending on the complexty of your design, you may need several rows. A simple, clean design, such as
the one in Figure 8-2, requires only two rows. The first row should span two cells; the second row should
contain two cells.

SeeFigure 8-4 for a look at the final sketch.

Centered table

630

400 1310

Figure 8-4: Always start by sketching the table dimensions, even before opening text editor.

The author of our sample Web site uses images in place of text for the navigational elements;
however, for usability reasons, try using text in place of images when possible. Even so, if you want
complete control of the font(s) in which your text appears, you may have to use images instead — and
create an image of the text written in your chosen font.

Constructing Basic Tables

After you complete a sketch that gives a pretty solid indication of the page and table layout, open your
HTML editor and create the skeleton of your table. The building blocks for that framework are the three
basic components of any table:

m Table:<t abl e>
m Tablerow:<tr>
m Table (data) cell:<t d>

A hierarchy defines the nesting order of table elements: A <t d> is always enclosed within a
<t r >, which is always enclosed within a <t abl e>.

With these three elements alone, you're ready to build a simple table; the markup that does the job looks
something like this:

<t abl e>
<tr>
<td> cell 1 </td>
<td> cell 2 </td>
</[tr>
<tr>
<td> cell 3 </td>
<td> cell 4 </td>
</[tr>
</t abl e>

In our example, we create a table with two rows based on the sketch in Figure 8-4. The first table row
encloses cells 1 and 2; the second table row encloses cells 3 and 4.

Table rows always run horizontally and the contents of each cell - in this case, cel | 1,
cel |l 2,and so on - are contained within their own <t d> element.

To create the shell of your table-based Web page (for example, one based on the sketch from the
previous section,Figure 8-4), you start with the <t abl e> element:

<t abl e>
</tabl e>
The<t abl e> element can have a number of optional attributes (for example, bor der =" 1" or

bgcol or =" bl ack") - for now, however, keep it simple. Next, decide how many rows you want the table
to have:

<t abl e>
<tr>...</tr>
<tr>...</tr>
</t abl e>

Figure 8-5 shows the type of table this markup generates: a simple table with two rows. Each <t r > tag
pair represents a single row.

e A
Figure 8-5: The beginning og the table structure contains only two rows.

After you enter the appropriate number of rows, you add cells using the table data cell (<t d>) element.
The<t d> element defines the number of cells - and, therefore, the number of columns.

The sketch in Figure 8-4 shows a two-column table with three cells, the first row contains one cell, and the
second row contains two cells. The markup for this arrangement looks like this:

<t abl e>
<tr>
<td> contents </td>
</[tr>
<tr>
<td> contents </td>
<td> contents </td>
</[tr>
</t abl e>

Here's where tables can get a bit tricky. A simple table with an even number of rows and columns (say two
rows and two columns) is a piece of cake - but you'll discover as you get more handy at designing your
own pages that your needs aren't likely to produce such symmetrical tables very often. If your table will
span more than one row or column (such as the first cell in the preceding example), you'll have to add an
attribute that tells the browser which cell does the spanning.

The number in the attribute corresponds with the number of columns or rows you want the cell to span,
which means if you're creating a table like the one in our example, you have to add the col span="2"
attribute to the first <t d> element. (The first cell in the table spans across two columns.)

See the section later in this chapter, 'Adding Spans,' for more information, but for now, assuming that
you're creating a table like ours, the markup looks like this:

<t abl e>
<tr>
<td col span="2"> contents </td>
</[tr>
<tr>
<td> contents </td>
<td> contents </td>
</[tr>
</t abl e>

Congratulations, you're done with your first table. Well, sort of. To effectively use tables for layout, you
need to know how to control several display issues, such as borders, table widths, and the handling of

white space within in your table. (For example, without borders, you can't really tell the table is there - it
won't show up in your browser. This isn't a bad thing or a good thing, but something that you do have the
power to change if you want.) Keep reading for more information on completing your table and integrating
it into your page.

The<t abl e>,<t r >, and <t d> opening and closing tags are required. If you forget to include
one, your table won't display correctly in most browsers.

Adding borders

For an HTML table, border refers not only to outside borders, but also to individual cell borders. You use
thebor der attribute to turn all these table borders on or off. (Keep in mind, however, that if you're using
tables to lay out content, the table borders should probably be turned off.) To turn the table (and cell)
border on, add the bor der attribute to the <t abl e> start tag, as shown in the following bold markup:

<t abl eborder="1">
<tr>
<td col span="2"> contents </td>
</[tr>
<tr>
<td> contents </td>
<td> contents </td>
</[tr>
</t abl e>

Other table elements

Although tables were first created to contain and display tabular data, they are now most commonly
used to control Web page layout. In this chapter, we focus on the elements that designer's use to
control layout, but for those of you who might want to create a traditional table, we define the
remaining table elements that you can use in this sidebar. They are as follows:

m <t h>: The table header element displays text in boldface with a default center alignment. You
can use the <t h> element within any row of atable, but you most often find and use it in the first

row at the top - or head - of atable. Except for their position and egotism, they act just like table
data (<t d>) tags and should be treated as such.

m <capti on>: The table caption (<capt i on>) element is designed to exist anywhere inside the
<table> . . . </tabl e>tags butnotinside table rows or cells (because then they wouldn't
be captioning anything) - and they can only occur once. Similar to table cells, captions
accommodate any HTML elements that can appear in the body of a document (in other words,
inline elements), but only those. By default, captions are horizontally centered with the table, and
their lines wrap to fit within the table's width. The <capt i on> element accepts theal i gn

attribute.

m <t body>: Table rows may be grouped into a table body section using the table body (<t body>)

element. A recent addition to the HTML 4 specification, these elements allow table bodies to scroll
independently of the table head (<t head>) and table foot (<t f oot >). The table body should
con- tain rows of table data. The <t body> element must contain at least one table row (<t r >).

m <t head>: Table rows may be grouped into a table head section using the table head (<t head>)
element. The table head contains information about the table's columns. The <t head> element
must contain at least one table row.

m <t f oot >: Much like the <t head> element, table rows may be grouped into a table footer
section, using the table footer (<t f oot >) element. The table foot contains information about the

table's columns and must contain at least one table row. Be sure to include your footer
information before the first instance of the <t body> element; that way, the browser renders that

information before taking a stab at all the content data cells.

m <col group>: The <col gr oup> element creates an explicit column group. The number of
columnsis specified using the span attribute or using the <col > element, which is defined
shortly. You use the span attribute to specify a uniform width for a group of columns.

m <col >: The table <col > elementis an empty element. You use the <col > element to further
define column structure. The <col > element should not be used to group columns - that is the
<col group> element's job. The <col > element is used after you define a column group and set
a uniform width to specify a uniform width for a subset of columns.

The value of the border attribute defines the thickness of the border in pixels. For example, bor der =" 5"

produces a 5-pixel border. If you leave this attribute off, most browsers don't display a border. However, if
you don't want your border visible, we suggest that you add bor der =" 0" to turn off the border for sure.

It's a good idea to turn on the table border when you're first creating and tweaking your table. This is
because it's sometimes difficult to see just what is going on without a border. After you've finished tweaking
your table, you can turn off the border.

When you don't use the bor der attribute, most browsers don't display a border but there's still
an invisible 2-pixel border. Therefore, when you design your table, factor those 2-pixels into your
calculations. To avoid the invisible two-pixel border altogether, set the bor der attribute to equal 0
(border="0").

Right now, the examples build on the table skeleton created in the previous sections. Figure 8-6 shows
how the Web page looks if you add a two-pixel border to the finished product.

o i il . M |t i) L b

[de [Yiew Fgeosiies Joals liels

ropneadone
evands
Clic i o

a
Luve Myaall

Prascot Curlywolf

CTIIT

AFvanas

ubbes Bulnba Darth Veds

&l = My G peatas
Figure 8-6: Most Web pages that use tables for layout don't use borders; here you can see why.

Adjusting height and width

Officially, you can only set the width of tables and cells; unofficially, however, some browsers also allow
you to set the height of your table. When you use tables to lay out Web pages, width becomes one of the
primary variables. But first, let's identify what happens if you don't include the wi dt h attribute at all.

Cell width

If you don't set table and cell width, the user's browser determines the width of every cell according to the
width of its contents - no more, no less. For example, suppose you want to put a logo in the first cell and
navigational items in the cell toits left. If you don't assign the width to the first cell (containing the logo), the
navigational items are placed right beside the logo, with no or almost no space between the two. To avoid
that cramped look, you can use the wi dt h attribute to strategically define an exact number of pixels
between the logo and navigational items.

If you're using tables for layout purposes, we recommend that you set the width for the table and
cells. You can do this using either pixels or percentages, keeping in mind that percentages allow your table
to be resized depending on the size of the browser window.

Defining width is easy when you use the wi dt h attribute. For example, you can set the width of your table
at 630 pixels like this:

<t abl e border="1" w dth="630">

</tabl e>

The value of the wi dt h attribute can be defined in pixels by using a positive integer (say, 630), or in
percentages by using a positive integer followed by a percent sign (as in 95%). This choice also applies

when you set the width of individual cells. To add widths to the table built earlier in this chapter (and to set
width for its individual cells), add the following markup shown in bold text:

<t abl e border="1" wi dt h="630">
<tr>
<td wi dt h="630"> contents </td>
</[tr>
<tr>
<td wi dt h="400"> contents </td>
<td wi dt h="230"> contents </td>
</[tr>
</t abl e>

Figures 8-7 and 8-8 show the difference between a site that doesn't define table and cell width and one
that uses the wi dt h attribute.

. P o in
et to ropaadopn r|.-::r'll

Lowva Miyual!
Fragcol Carlysel
0 n e i

Arthindon

Hultsba Bubsba Darth Visda

&l =, My e s
Figure 8-7: This image doesn't define width properties.

o i il . M Lt i) i b

[de [Yiew Fgeosiies Joals liels

ropealdopne
e

Chck Asw f poul mm nymg o
g% o mpeardnms econd

rope :

| vy Myl
Proscom Cushywoll
— —
"Iﬂl'} prm—

Vit Botdin Carh Wscks

2| Dua o letmiman

Figure 8-8: This image defines width properties.

If you set the pixel width smaller than the content's pixel size, the browser ignores the wi dt h
attribute and defaults to display all the cell contents. So, be sure to check all dimensions.

Cell height

Two factors bear close attention when you're defining table and cell height:

m You have two ways to define height. It works the same way as defining width - by using number of
pixels or percentages.

m Height is not nearly as important as width. Cell content determines the height of each cell;
normally, it's not even necessary to define cell height.

That said, you may want to avoid using the hei ght attribute. Here's why: According to the HT ML
standard, the hei ght attribute is not a <t abl e>attribute. You can use the hei ght attribute because
some browsers support it, but not all of them do yet. Bottom line: Using the hei ght attribute may produce
unpredictable results. However, it is used occasionally, so here's how to use the hei ght attribute to
further define a table:

<t abl e border="1" w dt h="630">
<tr>
<td wi dt h="630" hei ght="100"> contents </td>
</tr>
<tr>
<td wi dt h="400" hei ght="302"> contents </td>
<td wi dt h="230" hei ght="302"> contents </td>
</tr>
</t abl e>

Although, according to the HTML 4 standard, the hei ght attribute can legally be added to the
table data cell (<t d>) element, it's now deprecated (considered obsolete and on the way out). The

standard currently favors the use of style sheets; future versions of this standard have or will phase out the
hei ght attribute. Not because they don't want you to define this property, but rather because they want

you to set the height using style sheets instead. If you're interested in learning more about style sheets, see
Chapter 11.

Padding and spacing

Determining the white space between cells is essential for proper layout. Thinking back to our sketch, you

have to determine - to the pixel - how space is going to be used in your table. There are two attributes that
help you define white space: cel | paddi ngandcel | spaci ng. These attributes are similar, and can
sometimes confuse first-time HTML authors.

Both attributes allow you to put some space between cells; however, they do it using two different
techniques:

m cel | spaci ng increases the border width between cells - increasing the space between cells.
m cel | paddi ng pads the cell with space - the space is added within the cell walls.

The value for either attribute is defined in pixels. For example, cel | paddi ng="5" adds five pixels worth
of padding to each cell.

To define either attribute, add it to the <t abl e> start tag, as follows:

<t abl e cel | paddi ng="5" cel |l spaci ng="5">

When using tables for layout, without visible borders, it doesn't matter much which one you use. However,
if you add color to your tables - or use the border for any reason - you can see a considerable difference.
That's because cel | paddi ng increases the space within the border, and cel | spaci ngincreases the
width of the border itself, as shown clearly in Figures 8-9 and 8-10.

o i il . M |t i) L b

[ds [d@ Wiew [geosios [oas Qe

L+
| Lewe Myzad

Pt Cushyweslt

Anttenpon

oeiTracTions |

Higista Bl Carth e
- = My Cemm et
Figure 8-9: Cellpadding increases the space within each cell.

o i il . M Lt i) i b

[de [Yiew Fgeosiies Joals liels

Hokboan Eubilps Dty Vadls

gl : =, By o pestane
Figure 8-10: Cellspacing increases the width of the border.

The default value for cel | paddi ng is 1; the default for cel | spaci ng is 2. If you don't define
cel | paddi ng and cel | spaci ng, your users' browsers assume the defaults. Accounting for those pixels
in your sketch is a good idea.

Shifting alignment

In the past, table alignment was not well supported by browsers; therefore, if you wanted to center your
table, you had to find a different method that would work. Many designers used the <cent er > tag pair

outside the table, as follows:

<cent er>
<t abl e>

</t abl e>
</ cent er>

Browsers finally caught up; now you can use attributes that are part of the HTML standard to align your
tables (horizontally) and your table contents (horizontally and vertically). Aligning tables is similar to
aligning images.

To align your table horizontally, you use the al i gnattribute with the <t abl e> element. The al i gn
attribute, when used with the <t abl e> element has the following possible values: | ef t ,ri ght, or
cent er . When you use these values, the table is aligned to the left, right, or center of the document,
respectively.

You can also use the al i gn attribute with the <t d> or <t r > elements. However, when used with these
elements, the data is aligned in the cell or row. The values that can be used with the al i gn attribute in the
<t d> or <t r > elements are defined as follows:

m align="right": Aligns the table or cell contents against the right side.

m align="1eft": Aligns the table or cell contents against the left side. (This is the default setting.)
m align="center": Centers the table or cell contents.

m align="justify": Justifies cell contents in the middle (not widely supported).

m al i gn="char": Aligns cell contents around a specific character (not widely supported).

In the following example, we align our table in the center of the page (see Figure 8-11):

<t abl e border="1" wi dth="630" align="center">
<tr>
<td w dt h="630" col span="2"> contents </td>
</tr>
<tr>
<td wi dt h="400"> contents </td>
<td wi dt h="230"> contents </td>
</[tr>
</tabl e>

E]0ms 16 T A Pyt
Figure 8-11: Our simple table centered.

You can also vertically align cell contents using the val i gn attribute. The val i gn attribute cannot be
used for a <t abl e>; it can only be used with the <t r > and <t d> elements.

The possible values are as follows:
m valign="top": Vertically aligns cell contents to the top of the cell.
m val i gn="bot t ont': Vertically aligns cell contents to the bottom of the cell.
m val i gn="m ddl e": Vertically centers the cell contents. (This is the default.)

m val i gn="Dbasel i ne": Defines a baseline for all other cells in the same row, so alignment is the
same for all cells.

Theal i gn and val i gn attributes can also be used with the following other table elements: <col >,
<col gr oup>,<t body>,<t f oot >,<t h>, and <t head>.

If you set the alignment for a row (<t r >), and then set the alignment for a cell within that row
(<t d>), the setting you add to the cell overrides the setting for the row.

Adding Spans

One of the main reasons tables are a flexible alternative for arranging elements in your Web page is
because of spanning.

Spanning enables you to stretch items across multiple cells; you essentially tear down a cell wall. Whether

you need to span rows or columns, you can use the concept of spanning to wrangle your table into almost
any arrangement. Keep in mind that row and column spanning takes careful planning, and that planning
should occur during the sketching phase. The two attributes you use to span cells are col span and

r owspan. Both attributes are added to the <t d> element.

Changing column spans

To span columns you use the col span attribute in the <t d> element and set the value equal to the
number of cells you want to span. Figure 8-12 illustrates a cell that spans two columns.

Antieopos

(sIrachons |

Hulvbia Bebdns Dah Veds

5] I O
Figure 8-12: The cell spans two columns.

In this example, the first cell spans the two cells in the next row. You use the col span attribute setto 2, as

shown in the following markup, because the cell spans two columns:

<t abl e border="1" w dt h="630">
<tr>
<td wi dt h="630" col span="2"> contents </td>
</[tr>
<tr>
<td wi dt h="400"> contents </td>
<td wi dt h="230"> contents </td>
</[tr>
</t abl e>

After you add a col span attribute, verify that you have the appropriate number of <t d> cells. For
example, if you define a cell to span two columns, you should have one less <t d> in that row. If you use
col span="3", there should be two fewer <t d> cells in that row. You also want to make sure that the
other rows have the appropriate number of cells. For example, if you define a cell to span two columns,
the other rows in that table should have two <t d> cells to fill out the two columns.

Changing row spans

Row spans are similar to column spans, the only difference is that you span rows instead of columns. Like
thecol span attribute, the r owspan attribute is added to the <t d> cell. Figure 8-13 illustrates a cell that
spans two rows.

A rapa fu-daps basl |, Microual Inicese L aptaim

Aniivopos

(sTrachions |

Hubtea Balba Darth Vs

K [11 ey compnar
Figure 8-13: We have changed our table design so that the last cell containing our navigational items
spans two rows.

To span rows, you use ther owspan attribute in the <t d> element and set the value equal to the number
of cells you want to span.

You should sketch your table first, so you know what cells should span what. The example
design we've used throughout most of this chapter uses the col span attribute with the first cell. However,
the design could have been just as simple if we used a r owspan with the last cell that contains the
navigational items. Either way, the table is efficiently laid out. The modified table comes from the following
markup (note the bold r owspan) and is shown in Figure 8-14:

<t abl e border="1" wi dt h="630">
<tr>
<td wi dt h="400"> contents </td>
<td wi dt h="230" rowspan="2"> contents </td>
</[tr>
<tr>
<td wi dt h="630"> contents </td>
</[tr>
</t abl e>

AR E i s gy o B AL B T AT BE Y s - Bl o vl Db E sl

e [l Yew Fpomes fook felp -

] Do e Wy Cormptat
Figure 8-14: Our simple table with the last rows spanned.

Always keep in mind that columns are vertical and rows are horizontal. If you want to extend a cell
vertically (across multiple rows), use r owspan. If you want to extend a cell horizontally (across multiple
columns), use col span.

Populating Cells

After you've sketched your table, defined table properties such as width, cell padding and spacing, and cell
spanning, you're ready to populate the table cells with images, hyperlinks, text and almost any other HTML
element. This is a simple process: You add images, hyperlinks and text to the <t d> cell, similar to how you
add them to the <body> element. The following markup shows a populated table, with data added in bold:

<t abl e border="1" wi dth="630" align="center" cell paddi ng="5" cell spaci ng="5">
<tr>
<td col span="2" valign="bottom' align="left">

<inmg src="images/ropeAdopeRecords. gi f" wi dt h="249" hei ght="94"
al t ="r ope- a- dope records" border="0">
</ a>
</td>
</[tr>
<tr>
<td valign="top" align="right" w dth="400">
<inmg src="inmages/gunl ogo.gif" w dth="400" hei ght="302" alt="rope-a-dope
hone" border="0">
</td>
<td valign="top" align="left" w dth="230">

<inmg src="inmages/q.gif" border="0">

</ a>

<inmg src="images/ilovenyself.gif" border="0">
</ a>

<inmg src="inmages/prescottCurlywol f.gif" border="0">
</ a>

<inmg src="inmges/organi zations.gif">

<inmg src="images/anthropos.gif" border="0">
</ a>

<inmg src="inages/distractions.gif">

<inmg src="inmages/ hubbabubba. gi f" border="0">
</ a>

</td>
</tr>
</t abl e>

Testing Your Table

Testing is the final step before your table goes live. You must test your tables in all the popular browsers
— including Internet Explorer, Netscape, and Opera. If you don't, your users may have to squint at your
pages and may see your tables as one big mess.

As you're creating your table, we suggest that you have your browser window open at the same time.
Each time you change the width of a cell or add an item to a cell, save the document, and view it in the
browser window. That way, when it's time to test your table, you probably won't have too much tweaking to
do.

A challenge for many designers is to create table designs that work in every browser. Thanks to many
crusaders of standards, the newest versions of the most popular browsers, Netscape, Internet Explorer,
and Opera, all support the HT ML standard. If your audience does not consist of technical-savvy
individuals, you might want to consider older browsers when designing your tables.

You should always test your site in any browser that your users might have. For example, if your table is
aligned with al i gn="cent er ", butin an older version of Internet Explorer, the table remains flush with
the left side, you might have to add a <cent er > tag pair to your table. As we stated earlier, you won't
have too many problems with tables if you stick to the standard.

Table Making Tips

Before closing this chapter, we want to impart some of our favorite table techniques. After years of
building, maintaining, and troubleshooting tables, the following tips are a head start to creating effective
tables.

Following the standards

The first — and (we think) most important — tip is to keep with the established standards. The Web
Standards Project has been campaigning for full standard support in browsers and HTML authoring
applications since 1998. Their hard work should make your life easier.

Just a couple of years ago, if you built an HTML table, you would be forced to create different versions of
your Web page (each version containing browser-specific elements and attributes) to define some basic
table properties. As you might imagine, creating and maintaining different versions of the same Web page
can drive development costs sky-high. To get around those costs, many developers would carefully craft
their tables with specific markup that worked in Internet Explorer and Netscape — but what about Opera?
Well, happily those are problems of the past. The newest versions of Internet Explorer, Netscape, and
Operaall support HTML, as well as CSS and XHTML. To learn more about the fight for Web standards,
visitwwv. webst andar ds. or g.

Sanitizing markup

Efficiently written markup is easier to troubleshoot and maintain. Many designers use white space to
separate elements. For example, the following markup doesn’'t use much white space and is hard to read:

<t abl e border="1" wi dt h="630">

<tr><td wi dt h="630" col span="2"> contents </td></tr>
<tr><td wi dt h="400"> contents </td>

<td wi dth="230"> contents </td></tr></tabl e>

Check out this clean version:

<t abl e border="1" wi dt h="630">
<tr>
<td w dt h="630" col span="2"> contents </td>
</[tr> <tr>
<td wi dt h="400"> contents </td>
<td wi dt h="230"> contents </td>
</[tr>
</t abl e>

Notice that the white space we include is between elements; not within elements. If, for
example, you add white space between the <t d> and </ t d> tags, it affects the way the cell’s content is

displayed. Not generally something you want to do.

Nesting tables within tables

Many designers are forced to nest tables within tables to achieve a desired effect. This is not only legal,
but quite common — and okay, a few such nestings won’t hurt. Remember, however, that nesting too
many tables within tables can lengthen download time. To nest a table, you simply add the <t abl e>
within a <t d> element as follows:

<t abl e border="1">
<tr>

<td> contents </td>
<td> contents </td>
</[tr>
<tr>
<t d>
<t abl eborder="1">
<tr>
<td> contents </td>
<td> contents </td>
</[tr>
<tr>
<td> contents </td>
<td> contents </td>
</[tr>
</t abl e>
</td>
<td> contents </td>
</[tr>
</t abl e>

This markup produces the tables shown in Figure 8-15. Be sure to remember cell widths — the width of
the third cell should match the width of the nested table. Also, create and test the table you intend to nest
— separately, before you add it to your primary table.

23 E2Edits\HungryMinds\HTMLAT... i)

|
||::ontents ||::0ntents

Icontents Icontents

contents

||::ontents ||::ontents

El_ |_ |_ |g My Computer

Figure 8-15: Nested tables.

S

Using CSSto control table properties

Chapter 11 provides an overview of Cascading Style Sheets (CSS), a style-sheet language you can use to
define display properties for HTML documents. Compactly, definitions of a few CSS properties can take
the place of some attributes such as al i gn,cel | paddi ng,cel | spaci ng, and more. Tempting, but
watch out: Older browsers don't support CSS — although the recent versions of Internet Explorer,
Netscape, and Opera do. CSS provides more options for table display and is more flexible than HTML. If
you know your audience has appropriate (and recent) equipment, CSS may be the way to go.

Avoiding dense tables

We recommend creativity, but be careful and don’t pack a screen full of dense and impenetrable
information — especially numbers. A long, unbroken list of numbers quickly drives away all but the truly

masochistic — pretty much negating the purpose of the table to begin with. Put those numbers into an
attractive table (better yet, several tables interspersed with a few well-chosen images). Watch your page’s
attractiveness and readability soar; hear visitors sigh with relief.

Individual table cells can be surprisingly roomy; you can position graphics in them precisely. If you're
moved to put graphicsin a table, be sure to:

m Selectimages that are similar in size and looks.

m Measure those images to determine their heights and widths in pixels (shareware programs such as
Paint Shop Pro and GraphicConverter do this automatically).

m Use HTML markup to position these images within their table cells.

A short-and-sweet table keeps the graphics in check and guarantees that the text will always sit nicely to
its right.

Two more handy graphics-placement tips: Size your rows and columns of cells that contain images to
accommodate the largest graphic and center all graphics in each cell (vertically and horizontally). The
result is a consistent, coherent image layout.

Adding color to cells

Remember the bgcol or attribute that goes with the <body> element? bgcol or is the same attribute; it
affects the background of table cells in much the same way it affects the background of your entire HTML
document. Simply add this attribute to any table cell to change its background color:

<td bgcolor="teal "> ..</td>

You can use background color instead of using an image that would take longer to download.

Chapter 9: HTML Frames

Overview
In This Chapter

m Deciding whether frames are right for your HT ML page

Sketching a frame structure

Defining a frameset skeleton

Adding frame elements
m Targeting links in frames

HTML frames delineate, outline, and give structure to HT ML documents; by design, information can move
coherently within and among frames. Frames are not as commonly used as they once were, but times still
arise when frames work best and are used. For example, if you use any Macromedia products (such as
Flash or Dreamweaver), you'll notice that the help section on the product (stored locally) is laid out using
frames. In this chapter, we cover the basics of frames step by step.

Because frames became part of the HTML repertoire with HTML 4.0, older browsers (and browser
versions older than 3.0) can't handle frames properly. Text-only browsers don't deal well with frames
either. To be practical, this means that some of your users may not be able to appreciate the beauty and
efficacy of your frames.

As long as you're sure users have frames-com patible browsers - the recent versions of both Netscape
Navigator and Internet Explorer support frames, as do many of the non-commercial browsers such as
Mosaic and Amaya - you can safely use frames on your site. However, if your audience uses a wide variety
of browsers, you may want to shy away from frames. Another option is to offer a non-framed version of the
same materials so users can pick which version of your pages they want to explore.

Frames have some significant usability concerns (covered later in this chapter). If frames are
not strictly necessary, we recommend opting for tables instead.

When to Use Frames in an HTML Page

So, what are frames and why would you want to use them in your Web pages? Frames provide
advantages as well as disadvantages. As mentioned previously, frames are not as widely used as they
used to be. In this section you find out the advantages of frames as well as the disadvantages.

Why you may want to use frames

A browser window usually holds a single frame that displays one HT ML document. However, browser
windows can hold several frames (which are defined with the <f r aneset > element), and can display
several HTML documents at one time. Each frame works like a separate browser screen, but all the
frames are displayed together in one window. Imagine having three browser windows open (and tiled) at
one time, and you begin to get the picture.

What's really cool is that with frames, the different browser windows work together to display your content.
And for the control freak in all of us - depending on the attributes you give it - you can make a frame act
just like a standard browser screen, or freeze it so that it can't be adjusted.

The most significant difference between tables and frames is that tables are static, and frames can
be dynamic. You can scroll through information in individual frames, and users may find that appealing (or
possibly annoying).

Frames have numerous uses. You might be looking at a page that uses frames if
m The Web page has a fixed logo at the top and a scrolling bottom section.

m The page has a fixed top logo, a navigation bar and copyright notice at the bottom, and a scrolling
middle section for the page's content.

m The Web page has side-by-side frames that put a table of contents on the left and a scrolling text
frame on the right.

m On the left side of the page, there's a frame that's filled with icons that link to different parts of a Web
site; click an icon, and the element is displayed in the right frame.

You find out how to set up these structures later in this chapter. For now, note that frames are flexible.
Frames allow you to keep constant chunks of information on display while your users can scroll through
large amounts of text or dynamic content. Figure 9-1 provides an example of a Web page using two
frames.

B 15w Mtwue | amidy Mecrasaf iramet {oploen

| e flt Vew Faewrtes Teok Heip

—] R L

e

Framo 1 Frami 2
Figure 9-1: This site uses two frames.

Frame usability: Is another alternative better?

Early in their history, frames introduced some ticklish problems that caused many developers to shun
them. Some common usability concerns (even these days) are as follows:

m The browser's Back button may not work correctly.

m Users can't bookmark a collection of documents in a frameset. Only individual frames can be
bookmarked.

m A frameset may produce different results when reloaded.
m Users can become trapped in a frameset.

m Search engines find HTML pages, not framesets; therefore, search results can produce pages without
the navigational elements.

= [n older browsers, printing Web pages with framed content could be a hassle.

In many cases, using tables can produce the same result as using frames. The advantage to using frames
is that you can define one document that contains navigational elements, and dynamically change the
contents pages. This requires less maintenance since the navigational elements are defined in a separate
HTML document. However, with many of the modern HTML editors, you can define global templates that
control the maintenance issue. For example, Macromedia's Dreamweaver allows you to define a Web
page template that contains the navigational elements. Each time you create a new page using the
template, the navigational elements are already defined for you. Later you can make changes to the
global template, and Dreamweaver will update all the documents that were created using that template.
We recommend avoiding frames when you can. But if you must use them, be sure to follow the steps we
outline in this chapter:

m Sketch your frame structure on paper.
m Define your frame structure with <f r ameset > and <f r ame> elements only.
= Add attributes to define behavior.

m Check your documents in a browser.

To get a look at some well-designed frames, visit some sites that use them. (Yes, we have an example in
mind.) Before you sketch your frame structure, check out the well-designed frames at
Www. i nt ernet garden. co. uk/frameset 1.htm

Sketching Frame Components

The first step in creating frames is to sketch your design on paper. Using a pen or pencil - and a sheet of
paper - you define how the browser should render your pages. At this stage, you don't need to be precise
about the content, just the frame dimensions. For example, if you want to create the Web page in Figure 9-
1, you would sketch the dimensions for two frames for the Web page (see Figure 9-2). The first framed
component contains navigational elements, and the second framed component contains the main content
for our Web page.

10% 80%
Al gational Content
elements

Figure 9-2: A sketch of Figure 9-1.

Building a Set of Frames
To build aWeb page that contains two frames, you need to create three documents:

m The document that defines the frame structure, called the frameset document. The frameset
document is a normal HTML document in which you replace the <body> . . . </ body> tags with
the<frameset> . . . </franeset > tags. The frameset document only defines the frame
structure, so it's usually a short document.

= Two documents, each containing the HTML markup used in the two frames. The <f r ane>
element is an empty element used in the <f r ameset > element to point to the HTML document(s)
used for frame content.

Following the frameset document rules

Frameset documents are HT ML documents, so they must always begin with an <ht ml > tag, followed by
the<head> element, and we recommend you use the following HTML frameset DOCTYPE declaration
before the <ht m > tag:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTML 4.0 Franeset//EN'
"http://ww. w3. org/ TR REC- ht m 40/ fr aneset . dt d" >

With these elements, divide-and-conquer is the best approach. The frameset document only
contains elements that define the frame structure - no content is defined here.

Here are a few rules regarding frameset documents that you should keep in mind:
m The<franeset > element follows immediately after the closing </ head> tag.

m If any <body> elements appear before the <f r anmeset > elements, the <f r aneset > elements are
ignored.

m Between the outermost <f r aneset > tags, you can only nest other <f r aneset > elements or
<f r ame> elements - no other HTML is allowed.

The basic frameset document starts just like any HTML document; notice that the <body> tags are
replaced with <f r ameset > tags.

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Franeset//EN"
"http://ww.w3. org/ TR REC- ht Ml 40/ fr aneset . dt d" >
<htm >
<head>
<title>The Mettauer Famly</title>
</ head>

<franeset >
</ franmeset >

</htm >

The<f r ameset > element is the main container in a frameset document just like the <body> element is
the main container in regular HTML documents.

The<f r ameset > elements should also include <nof r anes> elements to define content for older
browsers that don't support frames or for text-only devices such as PDAs, mobile phones, and more. We
encourage you to put some content in this element, even if it's only to inform the readers to visit your no-

frames site.

Using frameset attributes

After you've added the <f r aneset > element, you need to add attributes that define the basic frame
structure in terms of columns or rows. The figures you've seen so far defined frames in terms of columns -
but rows work just as well for the purpose, as shown in Figure 9-3.

Framo 1

Bin [d8 Yiow Faesies Josh sty

= =T T—

Frame 2

Figure 9-3: Navigational elements are defined as a row on top of the content.
To define either rows or columns, you use one of the following two attributes in the <f r ameset > element:

m r ows: Determines the number of frames that appear vertically (stacked on top of each other) in the
browser window and the height of each frame.

m col s: Determines the number of frames that appear horizontally (placed side by side) in the browser
window and the width of each frame used to define a column structure.

The value for both attributes defines the height or width of the frames using pixels, percentages, or a
wildcard:

m pixels: You can define a fixed number of pixels (such as 50 or 250) for the row's height. This
procedure seems simple, but be careful: The size of the browser window can vary substantially from
one user to another. If you use fixed pixel values, try using one or more relative values (described later
in this chapter) with them. Otherwise the user's browser can override your specified pixel value, with
no way to ensure that the total height and width of all frames equals 100 percent of the user's window.
You may not want that to happen; a browser doesn't care about eyestrain. All it knows is to follow
orders and display all defined frames, even if squashed together and crammed with unreadable text.

m percentages: If you define the width or height in percentages, the value should be followed by a %
sign (" 209). This value tells the browser, "Size this frame to a percentage of screen area, between 1
and 100." If the total for all frames is greater than 100 percent, all percentages are reduced to fit the
browser window. If the values total less than 100 percent, extra space is added to any relative-sized
frames that happen to be hanging around.

m wildcard: You have a couple of options for the wildcard. First, an asterisk (*) character identifies a
relative-sized frame. Browsers give a frame defined with the asterisk all remaining space left over
after the other frames defined with pixels and percentages are laid out on the screen. If you have

several frames that take advantage of this flexible system, the remaining space is divided evenly
among them. Second, if you place a value in front of the *, the frame gets that much more relative
space. For instance, an entry such as 3*, * allocates three times as much space to the first frame (3/4
of the total on-screen space) as to the second frame (which gets a measly 1/4).

Many developers define frames either absolutely or relatively. If the height or width of a frame is
defined in pixels, it's an absolute value. If the width or height of a frame is defined in percentages or by
using awildcard, it's a relative value.

When you define values for the col s or r ows attribute, you define a value for each frame you're creating,
separating them with commas. The number of elements appearing in the value of the r ows or col s
attribute determines the number of frames displayed. For example, if you want to create two frames and
you want the first frame column to occupy 20 percent of the window and the second frame column to take
up the remainder of the window, you use the following markup:

<franeset col s="20% *">

Used with the r ows attribute, the same principle would look yield a markup like this:

<franeset rows="20% *">

The total height or width of all simultaneously displayed frames must equal the height of the browser
window.

Building a two-column frameset

To build a two-column frameset, you have to add the col s attribute to the <f r aneset > start tag. You
can use pixels, percentages, or a wildcard for the value of the col s attribute. To create the scenario
displayed in Figures 9-1 and 9-2, you could use the following <f r aneset > start tag:

<franeset col s="250, 500" >

Figure 9-4 illustrates this structure.

[[Wiew [grosis Toals ey

LTS = My G patn
Figure 9-4: This Web page consists of two columns.

Thecol s attribute governs how many frames can sit horizontally across the browser's
screen, as well as the width of each frame. To add a third frame to the scenario, you add a new value to
the comma-separated list:

<franeset col s="250, 500, 200" >

Building a two- or three-row frameset

To create atwo-row frameset, you use the r ows attribute - much the same way you use the col s attribute
(detailed in the previous section). The values are the same as those defined by the col s attribute. The
only difference is that with the r ows attribute, the values define height instead of width:

<franesetrows="150, *" >
Figure 9-5 illustrates this structure.

To add a third frame, add a new value to the comma-separated list:

<franeset rows="150, 400, *">

[[Wiew [grosis Toals ey

f._llh--l et Wy Campuine ;
Figure 9-5: The Web page consists of two rows.

Figure 9-6 illustrates this structure.

| By L

Figure 9-6: The Web page consists of three rows, with the third row taking up the remaining height in

the browser.

Combining rows and columns in the same frameset

When you create frames, you're not restricted to using only rows or only columns. You can mix them up,
but go easy on that technique; it isn't common (or recommended) because it can make your page harder
touse. If you want to try out the frameset mix 'n' match, however, you start by defining the r ows and col s
attributes one right after another. You can place these attributes just about anywhere in your markup
without affecting the placement of the frames. What decides the actual number of frames is how many
values you put in each attribute; the example in the previous section, "Building a two- or three-row
frameset," yields six frames because it collectively defines a total of six values - three rows, each with two
columns. Keep in mind that for each frame, you need a <f r ane> element that points to some resource,
as in the following example:

<franmeset rows="33% 33% *" col s="20% 80% >
<franme src="one. ht ni'>
<franme src="two. htni'>
<frame src="three. htnf'>
<frame src="four.htn>
<franme src="five. htnt>
<frame src="six. htni>
</franmeset >

Here, the order of the frame elements assigns the content. For example, the contents of one. ht mwill
appear in the first frame. The contents of t wo. ht mwill appear in the second frame in the first row. The
contents of the t hr ee. ht mwill appear in the first frame of the second row, and so on. Figure 9-7
illustrates how these documents are assigned.

B vt o) - Biin ool Smimines [aphin e

[le (8 Yiew Favitos Traln licky =

| Dssen =l Wy Campaitar
Figure 9-7: This frame structure has three rows and two columns, which results in six separate
frames.

Building the Frame Content

The previous sections have shown you how to define the structure, write the frameset document, and use
attributes to specify exactly how the frames should look and work. But that's really only part of the work. You
haven't created the content that the frames will display. That's what we show you how to do in this section.

The<f r ame> element is empty, meaning it stands alone and does not require a closing tag. The primary
purpose of the <f r ane> element is to point to the resource that you want to populate the frame. In most

cases, that resource is an HTML document, although it can also be an image or another resource. The
following markup shows <f r ame> elements that point to navi gat i on. ht mand cont ent. ht m

documents:

<frameset col s="20%*">
<frane src="navigation. htnf>
<frane src="content. htni>

</ franeset >

Listing the frame rules and regulations
As with all things HTML-related, you must obey the rules. Here are the highlights:

m You have to define a frame element for each frame. Yes, folks, it's true - if you want to display four
different HTML pages in frames, you have to create four frames; therefore you need (all together, now)
four<f r ame> elements.

= Any documents you point to (for example, navi gati on. ht mand cont ent . ht m) must exist
first.Be careful how you define the addresses of such documents.

You can define documents in frames relatively (navi gat i on. ht m) or absolutely
(http://wwv. domai n. cont navi gati on. ht nj. Just be sure they exist. See Chapter 5 on more
about relative and absolute links.

m The orderin which the frameelements are defined is important. The first <f r ame> element
defines the top or left-most frame area (depending on whether you use the r ows or col s attributes,
respectively). The second <f r ame> element defines the frame immediately to the right of the first
frame or (if the edge of the browser is reached) the frame in the next row. And so on.

m You can use many different attributes with the <f r ame> element to modify a frame's appearance. The
following section takes a closer look at them.

Using frame attributes

As with tables, frames have many attributes you can use to alter their appearance within the Web browser.
You can turn a frame border on or off, define frame margins, or disallow scrolling for a particular frame.
The following sections show you how.

Borders

Thef r amebor der attribute enables you to turn a border on or off. You can individually specify whether
you want the frames within your frameset to have borders. Borders help your readers differentiate between
frames, but they can also get in the way of a seamless page. The value of the f r amebor der attribute can
bel, to turn the border on, or O to turn the border off.

<franeset col s="20%*">
<frame src="navigation. htn' frameborder="1">

http://www.domain.com/navigation.htm

<frame src="content. htnl franeborder="0">
</ franeset >

The default value for the f r amebor der attribute is 1. If you don't want borders around your
frames, you have to use the f r anebor der attribute to turn them off (0).

Figure 9-8 shows the example site with borders turned off; Figure 9-9 shows it with borders turned on.

Figure 9-8: Borders turned off using f r anebor der =" 0" .

[As [#@ WVies [geedlies Tials |els

i 0 (5 0 00) A 2)) T T S v

Figure 9-9: Borders turned on using f r ane- bor der =" 1",

Margins
You can determine the margin height and width for any frame by using the following attributes:

= mar gi nwi dt h: Accepts a value of 1 or more pixels to determine the exact width of the left and right
margins of a frame.

m mar gi nhei ght : Accepts a value of one or more pixels to determine the exact height of the controls at
the top and bottom margins of a frame.

Once defined, the margins show up as white space in a browser's display; therefore, you can use these

attributes to nicely separate the content in one frame from the content in another. Margins must be one or
more pixels wide to keep objects from touching the edges of a frame. The mar gi nwi dt h and
mar gi nhei ght attributes are optional. If you omit this attribute, the browser sets its own margin widths

(usually one or two pixels, depending on the browser).

To define the margin height or width, add the attributes to the frame elements:

<frameset col s="20%*">
<franme src="navi gation. htni frameborder="0" margi nwi dt h="20"
mar gi nhei ght =" 20" >
<franme src="content. htni frameborder="0" margi nwi dt h="20" mar gi nhei ght ="20">
</frameset>

Scrolling frames

One helpful attribute, scr ol | i ng, enables you to turn a scroll bar on and off for any given frame. When
added to the <f r ame> element, you must define a value of yes,no, or aut o:

m yes: Forces the browsers to display a scroll bar for the frame.
m no: Does not display a scroll bar for the frame.

m aut o: Displays a scroll bar only if more content than fits in the window is displayed. This is the default
value.

For our example, we force the first frame to have a scroll bar, and require the browser to not display a scroll
bar for the second page, even if the content runs over.

<frameset col s="20%*">
<frame src="navigation. htm franeborder="0" scrolling="yes">
<frame src="content. htni franmeborder="0" scrolling="no">
</frameset >

Figure 9-10 illustrates the features described in this example when rendered in a browser.

[As [Yiew Fgessiies Joals |liels

| : k=l by Campuine
Figure 9-10: The browser window displays a scroll bar for the first frame, yet leaves it off for the
second frame, even though the content is cut off.

Targeting Links within a Frameset

Targeting links within a frameset is where frames get tricky, and usability can be thrown out the window if
you're not careful. To illustrate the concept of targeting links, consider the example in Figure 9-1 where we
define a frameset document with two vertical frames: a skinny one on the left that serves as a navigation
document, and a wider one on the right where the bulk of the content your users see shows up.

Say you want to create hyperlinks in the document that lives in the skinny frame on the left that, when
clicked, cause new Web documents to load in the wide frame on the right. Thisis actually a common
frame dilemma, because frames are often used to separate navigation from content.

If you don’t define the behavior correctly and click a hyperlink in the navigation frame, the contents will
most likely display in your browser window in place of the two frames. You need to make sure you target
the link correctly so the linked document replaces only the right frame, not the entire browser window.

Two steps are all you need to define how links behave in a frame structure:
1. Name each frame in the frameset document.

2. Point the link at the named frame.

Naming the frame

To name the frame in the frameset document, you add the nane attribute to the <f r anme> element as
follows:

<franmeset col s="20%*">
<franme src="navigation. htn franeborder="0" nane="nav">
<frane src="content.htnd franeborder="0" nane="content">
</franmeset >

The name of the frame can be almost anything you can think of, but we think you should keep the
names short and descriptive. In our example, we named the frame that always contains the main content
of our site, cont ent . Real creative? Maybe not. But definitely more useful than calling it spaghet ti .

Pointing the link to the target frame

After you name the frame, you can use the <a> element with the t ar get attribute to create a link that
opens in that named frame. The following example creates a link in the navi gat i on. ht mdocument that
openshi st ory. ht min the cont ent . ht mwindow:

Hi story

Because a target window name is already defined, the browser opens hi st ory. ht min the frame named
cont ent . Targeting works by giving you control over where the linked page (or other resource) appears
when a user clicks a link in your documents.

Normally, when a user clicks a link, the browser displays the new document in the current, entire browser
window (not justin a frame). Targeting enables you to change that: You can assign names to specific
frames — using the nane attribute — and require certain documents to appear in the frame that bears the
targeted name.

As with the nane attribute, any valid frame name you specifyin at ar get attribute must begin with
an alphanumeric character. The t ar get attribute introduces a few predefined exceptions (covered
shortly) that begin with an underscore character. Remember, however, that any targeted frame name
starting with an underscore or a non-alphanumeric character (provided the name has no special purpose)
gets ignored.

Using predefined values
Other than naming a specific frame name, you can use four predefined values with the t ar get attribute:

m _sel f: Specifying the _sel f target always causes the linked document to load inside the frame that
contains the hyperlink. All links act this way by default.

m bl ank: Specifying the _bl ank target causes the linked document to load inside a new browser
window, which is an easy way to force the user’s browser to launch another window. The _bl ank
attribute can be useful if you want to link to someone else’s site. But, make sure that your site is
immediately available to users in the first browser window that never went away.

Don't overuse _bl ank targets. Visitors to your site won't appreciate new browser windows
popping up all the time.

m _parent: Specifying the _par ent target makes the linked document load in the immediate frameset
parent of the document. If the current document in which the _par ent target appears has no parent,
this attribute behaves like the _sel f value.

m _top: Specifying the _t op target makes the linked document load in the full body of the window. If
the current document is already at the top of the document hierarchy, the _t op target name behaves
like_sel f. You can use this attribute to escape from a deeply nested frame.

If you get carried away using frames nested within frames nested within frames, or you link to
someone else’s framed site only to find their frames loading inside yours, you can use t ar get =" _t op"

to cancel out your frameset and revert back to a simple HTML page.
Zeroing in on targeted-link rules

Understanding targeted links may take a bit of wrestling. Keep a few things in mind while you grapple:

m You must name the frames in the frameset document: For our example, we hamed our two
framesnav and cont ent .

m You must target your links defined in the HTML documents that populate the windows: For our
example, we want to target all the linksin navi gat i on. ht mto point to the cont ent window.

m Check all links before the site goes live to verify that links are targeted correctly: This is always
a good practice, whether you're using frames or not.

m If linking to a document outside of your site, you can uset ar get =" _bl ank" to force that
document to openin a new, separate browser window: That circumvents some of the
unpredictability — always a good thing — of how the document will appear when it opens.

Nesting Framesets

Nesting frames introduces a new twist to the traditional frame structure, for example:

<franeset >
<franme>
<franme>

</franmeset >

In this example, we define one frameset that contains two frame documents. Remember, for every
document included in the frameset, there must be a corresponding <f r ane> element.

To split a frame into smaller frame components, you have to nest a <f r aneset > element within the
original frameset:

<franeset >
<franeset >
<franme>
<franme>
</ franmeset >
<franme>
</ franeset >

Our example uses two sets of <f r aneset > tags. The outermost set defines the primary structure, and
the second set defines the structure for the left frame. A third set is not needed for the right frame because
it's only a single frame.

We can split the navigation frame in the example we have been using throughout this chapter:

<frameset col s="250,*" franeborder="1" franmespaci ng="0">
<frameset rows="85%*" franeborder="1" franmespaci ng="0">
<frame src="navigation. htnl franeborder="1" franmespaci ng="0"
scrol ling="yes">
<frame src="note. htn' franeborder="1" franespaci ng="0">
</franmeset >
<frame src="content.htn franeborder="1" franespaci ng="0">
</frameset >

The second frameset functions much like the first set. You can even use the same attributes. In this
example, we split the first frame into two rows, and therefore, use the r ows attribute. Keep in mind that
adding a new frame here calls for three <f r ame> elements. Figure 9-11 shows the resulting new
frameset.

[ls (8 Yew Fgrees Tra licky =

i 6 BRI D020 *| Lol 8| co[RET 5§ SOSMEY i
Figure 9-11: The first frame, split into two smaller frames that contain navigational elements and a
note to users.

Chapter 10: HTML Forms

Overview
In This Chapter
m Using forms in your Web pages
m Creating forms
m Working with form data
m Designing easy-to-use forms

Most of the HTML you write helps you display content and information for your users. Sometimes,
however, you want a Web page to gather information from users instead of giving info to them. HTML form
markup gives you a healthy collection of elements and attributes you can use to create forms for collecting
information from visitors to your site.

This chapter takes a look at the many different uses for forms. It also shows you how to use form markup
to create just the right form for soliciting information from your users, reviews your options for working with
the data you receive, and gives you some tips for creating easy-to-use forms that really help your users
provide the information you're looking for.

The Many Uses for Forms

Although you can find literally millions of unique forms on the Web, every form is driven by the same set of
markup elements. Handily enough, they all fall into one of two broad categories:

m Search forms: These give users a way to submit search criteria.

m Data collection forms: These give your users a way to provide information for many uses such as
online shopping, technical support, site preferences, and personalization.

Web forms can be short or long, simple or complex, and they have myriad uses on the Web. Here are just
a few examples of how forms are used:

m Doing an online search: When you use a search engine to search a site or the entire Web, you enter
your search criteria in a form.

m Logging on to asite to view customized content: When you log on to a site, you enter your
username and password in a form. This type of form is a data-collection form.

m Shopping online: When you shop online or reserve travel online, you enter your selections and credit
card information in this type of data- collection form.

m Providing feedback to a site owner: When you send feedback to a Web site’s creator or ask for
technical support via a Web site, you use this data collection form to provide all the pertinent details.

Before you create any form markup, you need to have a good idea of what kind of data
you need to collect. Your data is what drives the form elements you use — and the way you put them
together on a page — so make sure you understand what data you need before you collect it.

Introducing search forms

You'd be amazed at the many ways forms can help users search a site, or even the Web itself. For
example, the IRS home page (shown in Figure 10-1) uses two different single-field forms to help visitors to
its site search for general information or to search for tax forms.

Tde T8 Vies [svesies Teak lels
St -+ DD et Gireww Wi |y - BF - WH

TYTE r pr— =] 25

‘4l Internal Revenue Service 7.

Dndly

s B S o Dan't bk now, bus bhe tex lews st chenged .
[(L] againl
e 28 i e, el
Pustite.slimes bae
| (L]
Dawd Hawn for Pgamis)
- ARt B

ocontesnts

Loy | ol iy = Lk it /s wall dlnri

g mien ymny Badanl

- i R A
Figure 10-1: The IRS home page uses two short search forms to help users find what they are
looking for in minimum time.

The Get Refund Status page, however, has a different function: You can use it to search IRS records for
the status of your refund. This page is a littte more complicated, as shown in Figure 10-2.

i U ol el dl 510 o1 Relaiod Staten. . B sqoll Seiwiaed [ophs e

s [8F View Favesdis Teals liels =

ot = - DU D e e P | e - W R

At] 5y o s penlin g e =] PG

5 Inffm'nal Revenue Service 17,

Dy

Refund Stalus
Qot Refund Status
Socisl S Fy Fumisn = I
S it -

iy Sl =

- Hon Tow B]

k- E : _
—
i Zre (= BT
Figure 10-2: The refund status search form is a little more complex.

The difference between the simple search forms on the home page and the slightly longer refund search
form is the kind of data the IRS site needs from you to search the site. When you enter keywords into the
fields on the home page, you may get dozens of relevant responses, which is okay: You can pick and
choose from the options and find the one that relates to you.

This strategy won’t work on the refund status page because refund information is sensitive and the IRS
doesn’t want you trolling through dozens of possible responses to find your information; the engine that
drives the search for your refund status needs more detailed information to find the exact data you're
looking for.

Because searches come in all shapes and sizes, so must the search forms that drive those
searches. If you plan to add a search form to your Web site, you must carefully consider what kind of data
visitors will be searching and what information you'll need from them to help them search successfully. A
short keyword search may do the trick, or you may need something more complicated.

Introducing data collection forms

Data collection is a general category that describes every form on the Web that doesn’t help someone
search for something. For example, the Library of Congress (LOC) uses a form to collect the information it
needs to subscribe teachers to a free electronic newsletter, as shown in Figure 10-3.

B Thes Luginimy Fage

Lo T el i I it it W

Mde (40 View Favesites Toals liek . ! :
- U - T e TL o e 1t M -
[Mt [- ey b e e My st b b b e =] 5

Vo Fewtbiarss [
Vi i manws |
Tem [-essstesa =]
R T)
camaseerarns [
B |

Sumcnbye fewl I
I5em Raarary o Lanarery | Amersras B ooy Wiriaws | Tl e
O BT i
Figure 10-3: A subscription form collects information to help teachers subscribe to an online

newsletter.

The LOC doesn’'t need much information to set up the subscription, so the form is short and simple. By
contrast, RateGenius (a car-loan and refinancing organization) uses a series of long and detailed forms to
gather the information it needs to help customers get the best possible loan rate. The form shown in
Figure 10-4 is just the first of several a visitor must fill out to provide all the necessary information.

uwm'-:.:uu:-d !._u_all application ﬁ

I I 1
Arvimf bl (nan Wabisia Bacbgromd Surd Sppiard SrSeroien

o i aruedk ¥, [T

First Rams |

MiGER it .

M Lt B —
T S

(T Ema. | o
Bovt Thwes te Contast You
Ermall Acdrans

Csts &t W -

Badial Bacurtty ReTdar

‘Weast Brakn MOSTY e -
HEws o Manmiy Oress Pepms -
Crarant Manky Car Faymant *

3] [T1E v
Figure 10-4: An online car loan site uses many long and detailed formsto collect necessary data.

111y
J

:l

When you create a form that collects information from visitors to your site, the information you need
to acquire drives the final structure of the form and its complexties. If you need a lot of information, your
form may be long and you may even use several forms. If you need just a little information, the form may
be short and (relatively) sweet.

Creating Forms
The HTML form markup elements and attributes fall into one of two categories:

m Elements that define the overall form structure and let the Web browser know how to handle the form
data.

m Elements that create input objects: fields, check boxes, drop-down lists, and the like.

Although every form has the same basic structure, the input elements you use differ depending on the data
you're trying to collect.

Basic form structure

All of the input elements associated with a single form are contained with a <f or n»> element and are all

processed by the same form handler. A form handler is a program on the Web server (or even possibly a
simplermai | t o URL) that manages the data a user sends to you via the form.

A Web browser is only programmed to gather information via forms; it doesn’t know what to do with the
information once it has it. You have to provide some other mechanism to actually do something useful with the
data you collect. A later section in this chapter (“What Do You Want to Do with Your Form Data”) discusses
form handlers in more detail.

The two key attributes you must always use with the <f or n> element are
m action: Uses a URL to specify the location of the form handler.

= net hod: Specifies how you want the form data to be sent to the form handler. The two possible values for
this attribute are get and post . If you specify get , the form data is sent to the form handler on the URL.
If you specify post , the form data is sent in the Hypertext Transfer Protocol (HT TP) header. Your specific
form handler dictates which value to use.

For a good overview of the difference, read the Good Forms article on the Webmonkey site at
http://hotw red.|ycos. com webnonkey/ 99/ 30/ i ndex4a_page3. ht n
The markup in Listing 10-1 creates a form processed by a form handler (on the Web server named
guest book. cgi) and sent to the handler via the post method.
Listing 10-1: A Simple Form Processed by a Form Handler

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. org/ TR REC- ht M 40/ 1 oose. dt d" >

<htnl >
<head>
<title>Forne</title>
</ head>

<body>
<form acti on="cgi - bi n/ guest book. cgi " met hod="post ">

<l-- forminput elenents go here -->

</fornp
</htm >

http://hotwired.lycos.com/webmonkey/99/30/index4a_page3.html

The value of the act i on attribute is a URL, so you can use absolute or relative URLSs to point to
a form handler on your site.

Using input elements

The elements you use to solicit input from your site visitors make up the bulk of any form. HTML supports a
variety of different input options — from text fields to radio buttons to images. There are three HTML elements
that you use to create input controls:

m <i nput >: Uses the t ype attribute to define several different controls, including text and password fields,
check boxes, radio buttons, submit and reset buttons, hidden fields, and images.

m <sel ect > and <opti on>: Used together to create drop-down lists.
m <t ext ar ea>: Creates a multiline text-input field.

Every input control, regardless of the type, associates some value with a name. When you create the control,
you give it a name and the control sends back a value based on what the user does in the form. For example,
if you create a text field that collects someone’s first name, you might name the field f i r st nanme. When the
user types his or her first name in the field and submits the form, the value associated with f i r st nane is

whatever name the user typed in the field.

For input elements that require a user to select an option (such as a check box or radio button),
rather than typing something into afield, you define both the name and the value. When the user selects a box
or a button and hits the submit button, the form returns the name and value assigned to the element.

The whole point of aform is to gather values associated with input controls, so the way you set the name
and value for each control is important. The following sections explain how you should work with names and
values for each of the various controls.

Text fields

Tex fields are single-line fields that users can type information into. You define a text field using the <i nput >
element and the t ype attribute with a value of t ext . You use the nane attribute to give the input field a
name, and the user supplies the value when he or she types in the field. This markup creates two text input
fields: one for a first name and one for a last name:

<form acti on="cgi - bi n/ guest book. cgi " acti on="post">
<p>First Name: <input type="text" nanme="firstnane"></p>
<p>Last Nanme: <input type="text" nanme="| ast nane"></p>
</ fornme

Notice that in addition to the input elements, the form includes paragraph (<p>)
elements and some text to label each of the fields. By themselves, most form elements won't give the user
many clues about what kind of information you want him or her to provide. You also have to use HTML block
and inline elements to format the display of your form. Figure 10-5 shows how a browser displays this HTML.

W Forms - Microsoft Indemei Explores
| Fila Edit View Favorites Toals Help E
| dalack = = = Y] | DhSeach [afFevodes PHooy |-
-
Farst Magne
Last IMaume I
L - =
'] Done | = My Compusar =

Figure 10-5: Text entry fields in a form.

Notice that the browser makes both text fields the same length. You can control both the length of the text
fields and the number of characters the user can type into the field by using the si ze and max| engt h
attributes. The following markup creates a modified version of the form that sets both fields to a size of 30 and
sets the max| engt h to 25.

<form acti on="cgi - bi n/ guest book. cgi" action="post">

<p>First Name: <input type="text" name="firstnane" size="30" nmaxl ength="25"></p>
<p>Last Name: <input type="text" name="| astnane" size="30" nmaxl ength="25"></p>
</ fornme

Each field will be approximately 30 characters wide; even so, a user can only type 25 characters into each
field, as shown in Figure 10-6.

W Forms - Microsoft Indemei Explores

|| Fila Edit View Favorites Toals Help B |
| #aBack - = - 3] 4| Sewch [3iFeder FHmoy |- ™
-

Farst Magne: [1234567801 011121 314151617

Last Mame |1P.'I-I‘.-:'|.'-'I'I'-E".'II 1121314151617
— =l
2] Dane I 1= My Computar =

Figure 10-6: You can specify the length and the maximum number of characters for a text field.

Password fields

A password field behaves just like a text field, except that when a user types into the field, the text the user
types is obscured by an asterisk, bullet, or other character so someone looking over his or her shoulder can’t

see what is being typed.

You create a password field using the <i nput > element with a t ype attribute set to passwor d, as follows:
<form acti on="cgi - bi n/ guest book. cgi " acti on="post">

<p>First Name: <input type="text" nanme="firstnane" size="30" maxl ength="25"></p>
<p>Last Name: <input type="text" name="| astnane" size="30" maxl engt h="25"></p>
<p>Passwor d: <input type="password" nanme="psswd" size="30" maxl ength="25"></p>
</fornp

Figure 10-7 shows how a browser replaces what you type with asterisks.

W Forms - Microsof Inermaet E wplorer

| Fila Edit View Faverites Toaks Help | = |

| #aBack = = - 03] | DASeach [affavedes (FHmoy | Bl *
4

Farst Maene: [Jahn

Last Mame I:':'-"

Faspaord |"'"""'1

= £
2] Dane | = My Computar I
Figure 10-7: Password fields are like text fields except that the browser masks the text a user enters.

Check boxes and radio buttons

You can use check boxes and radio buttons to give users a collection of possible options they can choose
from. When you use check boxes, users can choose more than one option from a collection, but when you

use radio buttons they can only choose one option.

To create radio buttons and check boxes, you use the <i nput > element with the t ype setto r adi o or
checkbox. Because users are simply selecting an option rather than typing text into a field, you use the nane
attribute to give each option a name and the val ue attribute to specify what value is returned if the user
selects a particular option. You can also use the checked attribute to specify that an option should be already
selected when the browser displays the form. This is a good way to specify a default selection in a list. Here's
some markup that shows how to format check box and radio button options:

<form acti on="cgi - bi n/ guest book. cgi " acti on="post">
<p>What are sone of your favorite foods?</p>
<p><i nput type="checkbox" nane="food" val ue="pizza" checked>Pi zza

<i nput type="checkbox" name="food" val ue="ice cream >l ce Creanxbr>
<i nput type="checkbox" name="food" val ue="eggsham' >G een Eggs and Hanxbr >
</ p>

<p>What is your gender ?</p>
<p><i nput type="radi 0" nane="gender" val ue="nmal e">Mal e

<i nput type="radi 0" nanme="gender" val ue="femal e" checked>Femal e
</ p>
</ fornp

Notice that each set of options uses the same name for each input control but gives a different value to each
option. You give each item in a set of options the same name to let the browser know they are part of a set.
Figure 10-8 shows how a browser displays this markup.

'ﬂF o - Microsal Inteinel Explored

Eile Edit View Favorlies Tools Help | = |

What ae seme of yom favonte Foods?
¥ Fuza

F]l\.‘E ':-:".'J.II:.

I (Green Egge and Ham

What iz wour gender?

" Male
@ Femals

E

&) Done = My Computer
Figure 10-8: Check boxes and radio buttons.

Hidden fields

Ahidden field gives you a way to collect name and value information that the user can’t see along with the rest
of the form data. Hidden fields are useful if you want to keep track of information associated with the form
(such as its version or name).

If your ISP provides a generic application for a guest book or feedback form, you may have to supply your
name and e-mail address in the form’s hidden fields so the application sends your form data specifically to
you. To create a hidden field, you use the <i nput > element with its t ype attribute set to hi dden, and then
supply the name and value pair you want to send to the form handler. Here’s an example:

<form acti on="cgi - bi n/ guest book. cgi " acti on="post">

<i nput type="hi dden" name="e-mail" val ue="nme@ysite.coni>

<p>First Name: <input type="text" nanme="firstnane" size="30" maxl ength="25"></p>
<p>Last Name: <input type="text" nanme="| astnane" size="30" nmaxl ength="25"></p>
<p>Passwor d: <input type="password" nanme="psswd" size="30" nmaxl ength="25"></p>
</fornp

File upload fields

You can also use a form to give users a way to share documents and other files with you. When the user
submits the form, the browser grabs a copy of the file and sends it with the other form data. To create this file
upload field, you use the <i nput > element with the t ype attribute setto fi | e. The file itself is the form field
value; you use the nane attribute to give the control a nane.

<form acti on="cgi - bi n/ guest book. cgi " action="post">

<p>Pl ease subnmit your resune in Mcrosoft Word or plain text format: </br>
<i nput type="file" name="resune">

</ p>

</ fornme

Browsers render a file upload field with a browse button users can use to surf their local hard drive and select
a file to send to you, as shown in Figure 10-9.

W Forms - Microsoft Indemaei Explorer
|| Fila Edit View Favarites Tooks Help | = |
| daBack = = = G] 4| DASeach [afFevoies PHmoy | e

B E

Flease subamat your reneme = Microsoft Werd or plam best format
Browge._

- R—
] Dane | 2 My Compuatir e

Figure 10-9: A file upload field.

When you accept files from users via a form, you open yourself up to receiving extremely large
files or files that might be infected by viruses. You should consult with whoever is programming your form
handler to discuss options for protecting the system files are saved to. You can put several barriers in place
that can help minimize your risks, including virus scanning software, restrictions on file size, and restrictions on
file type.

Drop-down lists

Long lists of radio buttons or check boxes can take up alot of screen real estate and make your page look
cluttered.Drop-down lists give you an alternative method for giving users lots of options to choose from. You
use two elements to create a drop-down list: <sel ect > to hold the list and a collection of <opti on>
elements to identify the list options. You use a nane attribute with the <sel ect > element to give the entire list
a name, and the val ue attribute with each <opt i on> element to assign a unique value for each. Here's an

example:

<form acti on="cgi - bi n/ guest book. cgi " acti on="post">
<p>What is your favorite food?</p>
<sel ect name="food">
<option val ue="pi zza">Pi zza</ opti on>
<option value="ice cream >l ce Creanx/option>
<option val ue="eggsham' >Green Eggs and Hanx/option>
</ sel ect >
</ fornmp

The browser turns this markup into a drop-down list with three items, as shown in Figure 10-10.

W Forms - Microsof Inermaet E wplorer

|| File Edit View Favarites Toaks Help B
| #aBack = = - (3] O | PhSenich [affavedes [FHmoy | Bl *|
|
What & your favonte feod?
Firza =

|cw Cresam

Gresm Eggs and Ham

Norm— : —
1 Bone [[|2 My Computer

7
Figure 10-10: A drop-down list.

As with radio buttons, the default allows a user to choose only one option from your list. If you want your
user to choose more than one option (usually by holding down the Alt or Cmd key while clicking options in the
list), add the mul t i pl e attribute to the <sel ect > element.

Also, by default, the browser displays only one option until the user clicks the drop-down menu’s arrow to
display the rest of the list. Use the si ze attribute with the <sel ect > element to specify how many of the

available options to show. If there are more options than you specify, the browser includes a scroll bar in the
drop-down list.

You can specify that one of the options in the drop-down list is already selected when the browser loads the
page, just as you can specify a check box or radio button to be checked. Simply add the sel ect ed attribute

to the <opt i on> element you want selected.

This modification to the markup given earlier allows the user to choose more than one option from the list and
sets the number of options to display to two. Also, the third option in the list is selected by default.

<form acti on="cgi - bi n/ guest book. cgi " acti on="post">
<p>What are sone of your favorite foods?</p>
<sel ect name="food" size="2" multiple>
<option val ue="pizza">Pi zza</ opti on>
<option val ue="ice creant>lce Creanx/option>
<option val ue="eggshan' sel ected>G een Eggs and Hanx/ opti on>
</ sel ect >
</ fornp

Figure 10-11 shows how adding these attributes modifies the display of the list in a browser.

W Forms - Microsof Infemaet E wplorer
| File Edit View Favarites Tooks Help B
| daBack = = - @ o | DSewch [sfFavcder PHnoy | - ®)
=
What & your favonte food?

=

& tione | [\ My Computer =
Figure 10-11: A drop-down list with modifications.

Multiline text boxes

Often, a single-line text field won't provide your users with enough room to include large chunks of text in a
form. If you want to create a text box instead of a text field, use the <t ext ar ea> element to define the box
and its parameters. Use the r ows and col unns attributes to specify the height and width of the box. The text
the user types into the box provides the value, so you need only give the box a name with the nane attribute:

<form acti on="cgi - bi n/ guest book. cgi " acti on="post">

<textarea rows="10" colums="30" nane="comments">
Pl ease i nclude any comments here.
</t ext area>
</ fornp

Any text you include between the <t ext ar ea> and </ t ext ar ea> tags displays in the text boxin the
browser, as shown in Figure 10-12.

‘A Forms - Microsoft Intemet Explores

| File Edit Wiew Favorites Tools Help -

| SaBack = = -)] A | PhSeuch [afFsvedes (FHinoy | Th= ®|
H

Plemss include 5]
ANy coamants hece.

B S| £ T —
Figure 10-12: A text box

Submit and reset buttons

Visitors need a way to let a browser know they are done with a form and are ready to send the contents. They
also need a way to clear the form if they want to start all over again or decide not to fill it out after all. You use
the<i nput > element with at ype of submi t to create a button users can click on to submit the form to you.
You use the <i nput > element with at ype of r eset to create a button that clears the form. These buttons
help the user tell the browser what to do with the form, but don’t actually send you any information. This
means you don't need to set up name and value labels for them, but you do use the val ue attribute to specify
how the browser labels the buttons for display. Here's an example:

<form acti on="cgi - bi n/ guest book. cgi " acti on="post">

<p>First Name: <input type="text" nanme="firstnane" size="30" maxl ength="25"></p>
<p>Last Name: <input type="text" name="| astnane" size="30" maxl engt h="25"></p>
<p>Passwor d: <input type="password" nanme="psswd" size="30" maxl ength="25"></p>

<p>What are sone of your favorite foods?</p>
<p><i nput type="checkbox" nane="food" val ue="pi zza" checked>Pi zza

<i nput type="checkbox" name="food" val ue="ice creamn >l ce Creanxbr>

<i nput type="checkbox" name="food" val ue="eggsham' >Green Eggs and Hanmxbr >
</ p>

<p>What is your gender ?</p>
<p><i nput type="radi 0" nane="gender" val ue="nual e">Mal e

<i nput type="radi 0" name="gender" val ue="femal e" checked>Femal e
</ p>

<p><i nput type="submit" val ue="Send"> <input type="reset" val ue="Cl ear"></p>
</ fornmp

Figure 10-13 shows how a browser renders these buttons as part of an overall form.

ﬂl pirmis - Miciosall Inteinetl Explorad

File Edit View Favorlies Tools Help [= |
=

First Hame: |

Last Masns |

}a:m-'.'-r-.{l

What are zoeme of your favonte foods?
F Puzza
M lee Cream

" Green Eges and Ham

What i your gender?

= hale
Female
Sand | Clear I
. — =
¢| Dane 4 My Computer &

Figure 10-13: Submit and reset buttons.

If you don't like the submit and reset buttons that a browser creates, you can substitute your own graphical
buttons by using the <i nput > element with a type of i mage and an sr ¢ attribute that specifies the image’s
location. For an image that submits the form, set val ue to submi t . For an image that clears the form, set
val ue toreset . Also, use the al t attribute to provide alternative text for browsers that don’t show images (or
for users who can’t see them).

<p><i nput type="image" value="submt" src=" submit_button.gif alt="Submt">
<i nputtype="image" value="reset" src="reset_button.gif" alt="Cl ear"></p>

What Do You Want to Do with Your Form Data?

Getting form data is really only half of the form battle. You create form elements to help users give you a
way to provide them with data, but then you need to do something with that data. Of course, your form and
your data will be unigque every time, so there is no single, generic form handler that can manage the data
for every form. Before you can find (or write) a program that handles your form data, you have to know
what you want to do with it.

For example, if you have a form that gathers information from users to display in a guest book, you want to
add the data to a text file or even a small database that holds the entries, and then create a Web page that
displays the guest-book entries. If you want to create a shopping cart, you'll need programs and a
database that can handle inventory, customer-order information, shipping data, cost calculations, and
more. On the other hand, if you just want to receive comments from a Web form via e-mail, you may need
only asimple mai | t o: URL.

Your Web hosting provider — whether it’s an internal IT group or an ISP to which you pay a monthly
fee — has the final say in what kind of applications you can use on your Web site to handle form data. If
you plan to incorporate forms into your site, be sure that your hosting provider supports the applications
you need to run on the server in order to process form. Chapter 17 includes more information on finding
the right ISP to host your pages.

Using CGI scripts and other programs with form data

Typically, most form data is processed in some way or another by a CGI script written in some
programming language. This can be Perl, Java, AppleScript, or one of many other languages that run on
Web servers. These scripts take the data from your form and make it useful by putting it into a database,
creating customized HT ML based on it, writing it to a flat file, or one of thousands of other things.

CGl is much too complicated a topic to cover completely in this book, so if you aren’t familiar with
CGl scripts and how they work, the “CGI Scripts for Fun and Profit” article on Webmonkey provides an
excellent overview:

http://hotwi red.|ycos. coml webnonkey/ 99/ 26/ i ndex4a. ht m

Chapter 14 also discusses CGl as it relates to creating dynamic Web sites that are integrated with
databases.

But don't think that just because you need a program to get the most from your form data that you don’t
have to become a programmer to make the most of forms. Many ISPs include support for (and access to)
standard scripts for processing commonly used forms such as guest books, comment forms, and even
shopping carts. Your ISP may give you all the information you need to get the program up and running,
and will most likely give you some HTML to include in your pages.

Although you can tweak the markup that manages how the form displays in the canned HT ML
you get from an ISP, be sure you don’t change the form itself — especially the f or melement names and
values. The program on the Web server relies on these to make the entire process work.

You can find several large script repositories online that provide free scripts you can download and use
along with your forms. Many of these also come with some generic HTML you can dress-up and tweak to
fit your Web site. You simply drop the program that processes the form into the folder on your site that
holds programs (usually called a cgi-bin), add the HT ML to your page, and you're good to go. Some
choice places on the Web to find scripts you can download and put to work immediately are

m Matt’s Script archive:www. scri pt archi ve. com!

m The CGIl ResourcelIndex:http://cqgi.resourcei ndex. cont

http://hotwired.lycos.com/webmonkey/99/26/index4a.html
http://cgi.resourceindex.com/

m ScriptSearch:www. scri pt search. com

However, if you want to use programs not provided by your ISP on your Web site, you'll need complete
accessto your site’s cgi-bin folder. Every ISP’s setup is a little different, so be sure to read your
documentation to find out whether you have support for CGl scripts — and what languages the ISP
supports. (Perl isusually a safe bet, but it's even safer to make sure.)

Sending data via e-mail

You can opt to receive your form data via e-mail instead of using a form to process it. You'll just get a
collection of name and value pairs in a text file sent to your e-mail address, but that’s not necessarily a bad
thing. You can include a short contact form on your Web site that asks people to send you feedback (a
feature that always looks professional); then you can simply include, in the action URL, the e-mail address
you want the data sent to:

<formaction="mailto: ne@ysite.com action="post">

Many spam companies get e-mail addresses by trolling Web sites looking for
mai | t o URLs. You might consider setting up a special e-mail account just to receive comments so the e-

mail address you use every day won't have yet another way to get pulled onto spam mailing lists.

Designing Forms That Are Easy to Use

Designinguseful forms is a different undertaking from designing easy-to-use forms. Your form may gather
the data that you need, but if it's hard for visitors to use, they may abandon it before they're done.

As you use the markup elements you've met in this chapter, along with the other
elements that drive page layout, keep the following guidelines in mind:

m Besure you provide textual cues for all your forms. Be clear about what information you're
looking for in a particular field and what format you need it in. If you want users to enter a date as
mm dd/ yy, be sure you tell them that. If you've limited the number of characters a text field can take
(using the max| engt h attribute), let users know so they aren’t frustrated trying to enter more
characters than your form allows.

m Use field width and character limits to provide visual clues about the data you need. For
example, if you want users to enter a phone number as xxx-xxx-xxxx, consider creating three text
fields: one for each segment of the phone number. Doing so helps users understand what kind of
information you want.

m Group like fields together. A logical grouping of fields makes filling out a form easier for users. If you
ask for someone’s first name, then his or her birthday, and then his or her last name, it will be
confusing. First name, last name, birthday flows more along the lines of the way people think.

m Break long forms into easy-to-manage sections. Let's face it; people don't like to fill out forms,
even when they're working on a computer. When you break long forms into shorter chunks, people
are less intimidated and are more likely to complete the form. Most major online retailers (such as
Amazon.com) use this method to help customers provide all the detail the company needs to
complete an order without making the buying process seem too arduous.

m Mark required fields clearly. If there are certain portions of your form that users must fill out before
they can submit it successfully, be sure to mark those fields clearly. You can make them bold, or a
different color, or put an asterisk beside them. It doesn’t really matter what you do as long as you do
something to point out to users how you've marked required fields.

m Let users know what information they need to complete the form. If users need to have any
information in their hands before they fill out your form, consider adding a form gateway page that
details everything users should have in front of them before they proceed onto the form. The
RateGenius Apply For a Loan page, shown in Figure 10-14, uses this technique to lay out clearly for
visitors about to fill out a long form exactly what information to prepare before starting to fill out the
form.

| Apply For a Loan

The sppication proceys dskes samr 310 rinates. You sl reed thie Polosing inforrution 1
Appk 1 | e L (s 8 new or uied G o s gesle or S i e e of 8 leme

= Arrart po wnuld T i bome

§ AFCUPT O COWE (e (F By

o Dl 150 ot i B T 00 1S T (el 05y
= Yenuris eule o maoe]

= iyt irfamiation [hame, bidh cate, 330, o), o0 ant apohng =ih & to-
e of i aorant

& CN i 8 e DERRE, YO Wil 1O FOE I VI 303 mleage o T vRnicH

:| l::rr rm'l.'n’:l.m'i'll.'lt’l " iq.mu. illrn.
Figure 10-14: A form gateway page helps users prepare to fill out a long form.
The series of forms RateGenius uses to gather information for car loans and loan refinancing are

excellent examples of long forms that collect a variety of different kinds of data using all the available form
markup elements. Visit wwv. r at egeni us. comto review its form techniques.

Part IV: Extending HTML with Other Technologies

In This Part:

Chapter 11: Getting Stylish with CSS

Chapter 12: HTML and Scripting

Chapter 13: Making Multimedia Magic

Chapter 14: Integrating a Database into Your HTML

Chapter 15: How HTML Relates to Other Markup Language

In this part. ..

Building attractive, user-friendly Web pages often involves more than HTML markup. In this part, we cover
some common and useful tools and techniques that help you extend and expand HTML'’s capabilities
through various add-ons or add-ins. You get a look at Cascading Style Sheets — a markup language
designed to let you define and manage how HTML documents look and behave simply and systematically.
You also go behind the scenes of scripting languages such as JavaScript and VBScript to see how they
can improve not only the way your Web pages interact with your visitors, but also how they can help
manage sophisticated display and navigation on your site.

Next, you review the features of various multimedia players and add-ins that can bring sound, video, and
animation to your Web pages. You get some hints on how to use such tools to best effect. After that, you
explore the complex and interesting relationships that Web pages can create between HTML and
databases — and the capabilities you can cultivate through judicious use of such technologies. Finally, you
get a sneak preview of the new extended markup languages that may someday replace HTML — how
they work, and why you might find them interesting for potential use in your Web sites.

Chapter 11: Getting Stylish with CSS

Overview
In This Chapter

m Understanding style sheets

Introducing CSS

Creating style rules

Linking style rules to Web pages

Introducing CSS properties

The goal of style sheets is to prevent users’ whims — as well as misconfigured browsers — from mangling
the display of style-dependent Web documents. Style sheets allow authors to specify layout and design
elements, such as fonts, colors, and text indentation. Style sheets give you precise control over how
elements appear on a Web page. What's even better is that you can create a single style sheet for an
entire Web site to ensure that the layout and display of your content is consistent from page to page. And
for the last bit of icing on the cake, Web style sheets are easyto build and even easier to integrate into
your Web pages.

As HTML has evolved and XHTML looms on the horizon for the future, the goal of the
markup powers that be is to eventually remove all formatting markup (such as the <f ont > element) from

HTML'’s collection of elements in lieu of style sheets.

Generally, style sheets give you more flexibility than markup ever will, and the HTML element collection
won’'t grow to include more display-oriented tags. When you want tight control over the display of your
Web pages, style sheets are the way to go.

Style sheets aren’t well supported in 3.0 and earlier browsers, and aren’t even 100 percent supported
in even the latest browsers, so you should carefully test your style sheets in a variety of browsers to be
sure they don’t mangle your page.

Understanding the Problems Style Sheets Solve

HTML was never designed to be a formatting language, and as a result, its formatting capabilities are
limited, to say the least. When you try to design a page layout in HTML, you’re limited to tables, font
controls, and a few other inline styles such as bold and italics. Style sheets give you the tools you need to
take your Web page to the next level. With style sheets you can

m Carefully control every aspect of the display of your page: Specify the amount of space between
lines, character spacing, page margins, image placement, and more.

m Apply changes globally: You can guarantee consistent design across an entire Web site by applying
the same style sheet to every Web page.

Quickly and easily modify the look and feel of your entire site by changing a single document
(the style sheet) instead of the markup on every page.

m Instruct browsers to control appearance: Provide Web browsers with more information about how
you want your pages to appear than you can communicate with HTML.

m Create dynamic pages: Use JavaScript or another scripting language along with style sheets to
create text and other content that moves, displays, and hides in response to user actions.

Using Style Sheets to Drive the Display of Your HTML

The gist of how style works on the Web is this: You define rules in a style sheet that specify how you want
content described by a particular set of markup to display. For example, you could specify that every first-
level heading be displayed in purple, Garamond, 24-point type with a yellow background (not that you
would, but you could). You link style rules to markup, and the browser does the rest.

CSS (for Cascading Style Sheets) is the official name for the HTML style-sheet tool, now in its second
version (CSS2). CSS1 was a good, solid shot at building a style-sheet mechanism for the Web. But it was
only a preliminary shot; the improvements built into CSS2 make CSS more robust. Currently, however,
most Web browsers actually offer better support for the first version of CSS (CSS1), which defines some
must-have Web features:

m Specifying font type, size, color, and effects

Setting background colors and images

Controlling many aspects of text layout, including alignment and spacing

Setting margins and borders

Controlling list display

CSS2 improves the implementation of many CSS1 components and expands on CSS1 with some new
definitions:

m Defining aural style sheets for text-to-speech browsers

m Defining table layout and display

m Automatically generating content for counters, footers, and other standard page elements
m Controlling cursor display

The next generation of CSS — CSS3 — is a collection of modules that address different aspects of Web-
page formatting (such as fonts, background colors, lists, text colors, and so on). The first of these modules
should become standards (officially called Candidate Recommendations) in late 2002, with additional
modules becoming final in 2003.

The W3C has devoted an entire section of its Web site to this topic at www. w3. or g/ styl e/ ¢ss. You can
find general CSS information there, as well as keep up with the status of CSS3. The site links to a number
of good CSS references and tutorials, and includes information on software packages that can make your
style sheet endeavors easier.

What You Can Do with CSS

You have a healthy collection of properties to work with as you write your style rules. You can control just
about every aspect of a page’s display — from borders to font sizes and everything in between. The
properties fall into several categories:

m Background properties: These control the background colors associated with blocks of text and with
images. You can also use these properties to attach background colors to your page or to individual
elements.

m Border properties: These control borders associated with the page, lists, tables, images, and block
elements (such as paragraphs). You can specify border width, color, style, distance from the
element’s content, and so on.

m Classification properties: These control how elements such as images flow on the page relative to
other elements. You can use these properties to integrate images and tables with the text on your

page.

m Font properties: These control all aspects of the font(s) you use — including font size, family, and
height. These properties give you more control over your text with style sheets than the f ont element
ever will.

m List properties: These control the way lists appear on your page. You can manage list markers, use
images in lieu of bullets, and so on.

m Margin properties: These control the margins of the page, block elements, tables, and images.
These properties extend the ultimate control over the white space on your page.

m Padding properties: These control the amount of white space around any block element on the
page. When used with margin and border properties, you can create some complex layouts.

m Positioning properties: These control where elements sit on the page. These properties give you the
ability to specifically place elements on the page much as you would in a page layout tool.

m Size properties: These control how much space (in height and width) that your elements (both text
and images) take up on your page. They're especially handy for limiting the size of text boxes and
images.

m Table properties: These control the layout of tables. You can use them to control cell spacing and
other table-layout specifics.

m Text properties: These control how text displays on the page. You can set text color, letter and line
spacing, alignment, white space, and so on.

A complete description of CSS properties is beyond the scope of this book, but if you'd like
to see more about how each property works, there are entire books and Web sites devoted to the fine
details of using each and every property in these various categories. If you'd like a print reference, we
suggestCascading Style Sheets For Dummies by Damon A. Dean and published by Wiley Publishing. If
you'd like a Webified reference, we suggest you visit DevGuru’s CSS2 reference at
www. devgur u. coml Technol ogi es/ css/ qui ckref/css index. htm.

Although CSS syntax is straightforward, combining CSS styles with markup to fine-tune your
page layout can be alittle complicated. Fortunately, all you really need do to become a CSS guru isto
learn the details of how the different properties work — and then experiment to see how different browsers
handle them. As with HTML, practice will give you insight into the right way to use CSS to help convey your
message on the Web.

Introducing Basic CSS Syntax

A style sheet is made up of style rules; each style rule has two distinct parts:
m Selector: Specifies the markup element to which you want the style rules to apply.
m Declaration: Specifies how you want the content described by the markup to look.

You use a particular set of punctuation and special characters to define a style rule. The syntax for a style
rule always follows this pattern:

sel ector {declaration}

A declaration breaks down further into a property and a value. Properties are different aspects of how the
computer is to display text and graphics (for example, font size or background color). You combine a value
with a property to specify exactly how you want text and images to look on your page (for example, a 24-
point font size or a yellow background). You separate the property from the value in a declaration with a
colon, like this:

sel ector {property: val ue}

For example, these three style rules set the colors for first-, second-, and third-level headings respectively:
hl {color: teal}

h2 {col or: naroon}
h3 {col or: black}

The CSS specification lists exactly which properties you can work with in your style rules and the different
values that they take. Most are pretty self-explanatory (col or and bor der , for example). See "What You
Can Do with CSS" earlier in this chapter for a quick rundown of what properties the CSS2 specification
includes and what values they can take.

Style sheets override a browser’s internal display rules; thus your formatting specifications affect the final
display of the pagein the user's browser. This means you can better control how your content looks, and
create a more consistent and appropriate experience for visitors to your site. For example, the following
style rules specify the font sizes for first-, second-, and third-level headings:

hl {font-size: 16pt}

h2 {font-size: 14pt}

h3 {font-size: 12pt}

Figure 11-1 shows a simple HT ML page with all three heading levels without the style sheet applied. The
browser uses its default settings to display the headings in different font sizes.

a Snyle Sheets - Microsof Intermel Explorer
|| File Edit View Favorims Tools Help | # |
=

This is a first-level heading.

This is a second-level heading.

This is a third-level heading.

-

[&] Dane [T EwyCompater
Figure 11-1: An HTML page without style specifications.

Figure 11-2, however, shows the Web page with a style sheet applied. Notice that the headings are
significantly smaller than in the previous figure. That’s because the style-sheet rules override the browser’s

settings.

; Style Shoats - Bliciosalt Internet Explones

Filo Edit View Favorltes Tools Help | = |
5|

This is a first-level heading.

This i= a second-leve] heading.

This is & thinl level beading

&) Done | [\Emy Computer =
Figure 11-2: An HTML page with style specifications in effect.

Users can change their preferences so their browsers ignore your style sheets. Most users
don’t do so, but some will. It’s always a good idea to test your Web page with style sheets turned off to be
sure it still looks good (or acceptable, anyway) to those without the benefit of style.

Combining selectors and declarations

Chances are you'll want a style rule to affect the display of more than one property for any given selector.
You could create several style rules for a single selector, each with one declaration, like this:

hl {color: teal}
hl {font-famly: Arial}
hl {font-size: 36pt}

After a while, however, such a large collection of style rules becomes difficult to manage. CSS enables
you to combine several declarations in a single style rule that affects the display characteristics of a single
selector, like this:

hl {color: teal;
font-famly: Arial;
font-size: 36pt;}

Notice that all the declarations for the h1 selector are contained within the same set of brackets ({}) and
separated by a semicolon (;). You can put as many declarations as you want in a style rule; just be sure to
end each declaration with a semicolon.

From a purely technical standpoint, white space is irrelevant in style sheets (just as it
isin HTML), but you should consider some consistent spacing scheme so you can easily read and edit
your style sheets.

If you want the same set of declarations to apply to a collection of selectors, you can do that, too: Just
separate the selectors with commas. The following style rule (for example) applies the declarations for text
color, font family, and font size to the h1,h2, and h3 selectors:

hl, h2, h3 {color: teal;
font-famly: Arial;
font-size: 36pt;}

As you can see from the sample style rules included in this section, style sheet syntax relies
heavily on punctuation. When you have a style rule that doesn't seem to be working exactly as you
anticipated, double-check your syntax to be sure you haven't inadvertently used a semicolon where you
should have used a colon, or a parenthesis where you needed a bracket. The W3C's validation service at
http://jigsaw. w3. org/ css-val i dator/ canalso help youzero in on any problems with your style
sheets.

http://jigsaw.w3.org/css-validator/

Working with style classes

Sometimes you may want to create style rules that apply only to particular instances of an HTML markup
element. For example, if you want to create a style rule that applies only to paragraphs that hold copyright
information, you need a way to let the browser know that the rule has alimited scope.

To target a style rule more carefully, you can use the cl ass attribute with a markup element. This bit of
HTML has two kinds of paragraphs: a regular paragraph (without a cl ass attribute) and a cl ass attribute
with the value of copyri ght :

<p>This is a regular paragraph. </ p>
<p class="copyright">This is paragraph of class copyright.</p>

To create a style rule that only applies to the copyright paragraph, add a period (.) and the value of the
class attribute (copyr i ght) after the paragraph selector in the style rule. The resulting rule looks like this:

p.copyright {font-famly: Arial;
font-size: 10pt;
color: white;
background: bl ack;}

This style rule specifies that all paragraphs of class copyri ght display white text on a black background
in 10-point Arial font. Figure 11-3 shows how a browser applies the style rule only to a paragraph that has
the proper class attribute defined.

B Sryle Sheets - Microsof intermet Explorer

|| File Edi View Favorles Toals Halp -
E

Ths o a regular paragraph

e

ioee [[EwvyCompse
Figure 11-3: Use classes to target your style rules more precisely.

You can also create style-rule classes that aren’t associated with any element, as in the following
example:

.warning {font-famly: Arial;
font-size: 14pt;
background: white;
color: white;}

You can use this style class with any element by adding cl ass="war ni ng" to the element. Fiqure 11-4
shows how a browser applies the warning style to both the paragraph and heading, but not to the block
quote in this HTML:

<p class="warning">This is a paragraph of class warning.</p>
<bl ockquot e>This is a block quote w thout a defined class. </bl ockquot e>
<p class="warning">This is a paragraph of class warning.</p>

n Style Shewts - Miciosol Inteimel Explore

Cile Edit View Favorites Took Help a

h of class warning.

“Thes &5 a block quote without a defined class

This is a paragraph of class waming.

=l

.E| Done E My Computter
Figure 11-4: You can create style rules that work with any element by using classes.

Understanding How Styles Are Inherited

One of the fundamental concepts in HTML (and markup in general) is nesting tags. Your entire HTML
document is nested within <ht m > and </ ht m > tags, and everything a browser displays in a window is
nested within <body> and <body> tags. (And that's just the beginning, really.) The CSS specification
recognizes that you will often nest one element inside another and want to be sure the styles associated
with the parent element find their way to the child element.

When you assign a style to an element, all the elements nested inside it have that style applied to them as
well. For example, a style rule for the body element that sets the page background, text color, font size,

font family, and margins looks like this:

body {background: bl ack;
color: white;
font-size: 14pt;
font-famly: Garanond;
mar gi n-left: .75in;
mar gi n-right: .75in;
mar gi n-top: 1in;}

If you want to set style rules for the entire document, be sure to set them in the body element.
Changing the font for the entire page (for example) is much easier to do that way; it beats changing every
single element one at a time.

Paying attention to inheritance

As you begin to build complex style sheets that guide the display of every aspect of a page, you must
keep inheritance in mind. For instance, if you set the margins for the page in a body style rule, the
margins you set for every other element on the page will build off of the ones you set for the body. As
long as you pay close attention to how your style rules work together, you can use inheritance to your
advantage to minimize style rule repetition and create a cohesive display for your page.

This chapter covers basic CSS syntax, but if you want to fine-tune your style rules with some advanced
techniques, you can get a complete overview of CSS syntax rules in the “CSS Structure and Rules”
tutorial put together by the Web Design Group at

wwwv. ht ml hel p. com ref erence/ css/structure. htmnl .

Even though the style rule is set only for the body element, it applies to all elements in the following HTML
(as shown in Figure 11-5):
<body>
<p>Thi s paragraph inherits the page styles.</p>
<h1>As does this headi ng</hl>

As do the itens in this list
ltenx/Ii>
ltenx/Ii>

</ body>

'g'_itplu Sheaets - Blictosoll Intemmet Exploner
Eile Edit View Favoriies Teols Help

This paragraph mhents the page stylss

As does this heading

the 1tems mn this list

] Done =4 My Computer
Figure 11-5: Inheritance means style rules apply to nested elements.

Adding Styleto Your HTML Page

When you finish creating your style rules, the next step is to connect them to your HTML page. You have
three options:

m Build a style sheet directly into a Web page — called an internal style sheet — by using the <st yl e>
element.

m Link a style sheet stored outside the Web page — called an external style sheet — by using the
<l i nk> tag.

m Add style information directly to a tag by using the st yl e attribute.

Internal style sheets

An internal style sheet lives within your HTML page. You simply add style rules ina <st yl e> element in
the document's header and you're done. You can include as many (or as few) style rules as you want in
an internal style sheet. (See Listing 11-1.)

Listing 11-1: Adding an Internal Style Sheet to an HTML Document

<ht m >
<head>
<title>Internal Style Sheet Example</title>
<styl e>
body {background: bl ack;
color: white;
font-size: 14pt;
font-famly: Garanond;
margi n-left: .75in;
margi n-right: .75in;
mar gi n-top: 1lin;}

hl, h2, h3 {color: teal;
font-famly: Arial;
font-size: 36pt;}

p.copyright {font-famly: Arial;
font-size: 10pt;
font-color: white
background: bl ack;}
warning {font-famly: Arial
font-size: 14pt;
font-color: red;}
</style>
</ head>
<body>

<! -- Docunent content goes here -->

</ body>
</htnl >

The main benefit of an internal style sheet is convenience: Your style rules are right there in the page
with your markup so you can tweak both quickly. However, if you want to use the same style sheet to
control the display of more than one HTML page, make the styles easy to find: Move them out of the
individual Web page and into an external style sheet.

External style sheets

An external style sheet holds all your style rules in a separate text document that you can reference from
any HTML file on your site. Although you have to maintain a separate style sheet file, the benefits an
external style sheet offers for overall site maintenance are significant. If you have 50 pages on your site
and they all use the same style sheet, you can change colors, fonts, or any other formatting characteristic
on all your pages with a quick change to the style sheet.

To reference an external style sheet, you use the | i nk element in the Web page header — like this:

<htm >
<head>
<title>External Style Sheet Exanple</title>
<link rel="styl esheet" type="text/css" href="styles.css">
<head>
<body>

<! -- Docunment content goes here -->

</ body>
</htnl >

Thehr ef attribute in the <l i nk> element can take an absolute or relative link. This means you can
choose to link to a style sheet that doesn’t even reside on your site! Generally, however, it's best not to do
so — after all, you want to control your site’s look and feel yourself. However, if you want to quickly add
style to your Web page (or experiment to see how browsers handle different styles), you might use an
absolute URL to point to one of the W3C's Core style sheets — predefined style sheets you can use by
simply linking to a URL. Read more about them at ww. W3. or g/ St yl eSheet s/ Core/ .

When you link to a style sheet that resides on your own site, you create a relative link. When you link
to one on someone else’s site (such as the W3C'’s core styles), you create an absolute link. Chapter 5
discusses the difference between the two types of links.
Element-level style rules: Use them with caution

Just so you know, you can attach individual style rules to individual elementsin an HTML document. A
style rule attached to an element looks like this:

<p style="color: green">The paragraph is green.</p>

Adding style rules to an element is quick and dirty, but isn’t really the best approach. We generally
recommend that you choose either internal or external style sheets for your rules instead of attaching the
rules to individual elements in your document. Here are a few reasons why:

m Your style rules get mixed up in the page and are difficult to find.

m You have to place the entire rule in the value of the st yl e attribute, which makes complexrules
difficult to write and edit.

m You lose all the benefits that come with grouping selectors and reusing style rules in external style
sheets.

Chapter 12: HTML and Scripting

Overview
In This Chapter
m Looking behind the scenes with scripts
m Adding scripts to your Web pages
m Understanding client-side and server-side scripts
m Dissecting three sample scripts

HTML is static. You use it to describe your content and a browser displays that content on the Web. That's
it HTML can't help you create images that magically change when users move mouse pointers over them,
cause additional browser windows to pop up when a page loads, or create any of the many other
interactive and dynamic effects you see at work regularly on the Web.

So, if HTML can’t make this happen, what does? The answer is scripting. When used in conjunction with
your HTML markup, content scripts — small programs that you add to your Web page — can help your
Web pages respond to user actions.

Because scripts are programs, they're written in a programming language and use programming
techniques. Therefore, yes, you have to know something about programming if you want to create scripts
from scratch. However, you can easily integrate scripts that others have written into your HT ML pages
without knowing much about programming at all. This chapter focuses on laying out the least you need to
know about scripting to integrate pre-written scripts into your Web pages.

If you want to learn the ins and outs of creating scripts yourself, pick up JavaScript For Dummies, by
Emily A. Vander Veer (Wiley Publishing). This book walks you through the least you need to know about
creating scripts for your pages from scratch. Also, many good HTML editors (such as Macromedia
Dreamweaver and Adobe GoLive) have built-in toolsets to help you create scripts — even if you don't
know anything about programming. This is the route that some developers choose because it's the
easiest.Chapter 16 discusses HTML editors like these in more detail.

What Scripts Can Do for Your HTML

In a nutshell, scripts can help you transform static HTML that just sits on the page (an important but dull
job) into dynamic HT ML that responds to user activities and makes visible or audible changes in the user’s
experience. For example, if you visit Dummies.com (Wwwv. dumi es. com) and click the red button next to
the search box without entering a term to search on, the browser displays a nice warning box that reminds
you to enter a search term before you actually search, as shown in Figure 12-1.

T 1 Vies (swsrien leamm llely

] T r———r

= Dumreries
= Specialty Shep
The i il meirey it Dy ¥ s %,

FT Lo
b s pedeos ey patlem, < B
s carh, s ptber Fam drrmy -
#:g Rerliglon & Spintuality page
- -
T st

| et Esvrens | S S PEETS

5 _“Fﬁ'_'i'-.?'.:.‘.i_?..'.:'_'."'.'.._'..... e S Wl e i

| younchick Uns Dutton

Figure 12-1: ... a script makes a dialog box appear to tell you what you did wrong.

Scripts add programmatic functionality to your Web pages and allow them to respond dynamically to what
users do on the page — for example, filling out a form or moving their mouse pointers over an image
(called a mouseover and covered later). When you add scripts to your page, the page interacts with users
and changes its display or its behavior in response to what users do.

A short script verifies whether you've entered a search term before the engine runs the query:
m [f you enter a search term, you don’t see the warning.

m If you don't enter a search term, the script built into the page prompts the warning dialog box to
appear.

This bit of scripting makes the page dynamic, which means it responds in different ways to how a user
interacts with its elements. In effect, the script helps the page respond to what you do with the elements on
the page.

Notice that the page URL doesn’t change and another browser window doesn’t open when
you try to search on nothing. The page responds to what you do without sending a request back to the
Web server to request a new page. This is why the page is considered dynamic.

If you wanted to try this trick without using a script (that is, without the dynamic functionality), the browser
would send the empty search string back to the Web browser. Then the server would return a separate
warning page reminding the user to enter a search term. All the work would be done on the Web server
instead of in the Web browser.

Understanding What Makes Scripts Tick

Ascript is a set of programming instructions that activate when an event that you define occurs. An event
is most often a user activity, such as moving a mouse pointer over an image, clicking a link, or selecting a
drop-down menu.

In your HT ML, you specify that a particular script fires off when a particular event occurs on a particular
element. For example, the event could be that a user rolls his or her mouse over an image on the page.
Of course, you have to specify which element, which event, and which script.

Here’s exactly what happens when you activate an image rollover (a change in the image triggered when
you move the mouse pointer over it):

1. You're browsing the Web and arrive at areally cool Web page that includes some HTML for an
image.

Unbeknownst to you, attached to that image are instructions to call a script named r ol | over that
activates both when you move your mouse over and also when you move your mouse off the
image.

2. You move your mouse over the image.

The browser looks for the r ol | over script and executes the instructions in the script that specify
what to do when a mouse pointer moves over the image.

3. Therol | over scriptinstructs the browser to replace the original image with a new image.
4. The browser downloads the new image and displays it in place of the original image.
5. You move your mouse off the image.

The browser looks back at the r ol | over script and executes the instructions in the script that
specify what to do when you move your mouse off the image.

6. Ther ol | over scriptinstructs the browser to display the original graphic again.
7. The browser replaces the new image with the original image and you're back to where you started.

In this example, the only time the browser has to contact the Web server is to get the new image. If you
want images to be ready to show if a user event triggers a script, you can have your script instruct the
browser to preload and hold onto specific images referenced in the script. They are what the user sees
when he or she triggers an event.

Specifying event attributes

Although you write the actual instructions for the script in a scripting language, you still use HTML
attributes to specify what script to call for each specific element. The attributes correlate to common user
events (such as clicking or moving a mouse) and include the following:

m onl oad: Browser loads an HTML page.

onabort : User cancels apage load.

m onunl oad:Browser stops displaying one Web page because it's about to load another.
m onerror :Browser encounters an error in the scripts or other instructions on the page.
m onnpbusenpve:User moves the mouse pointer anywhere on the page.

m onnouseover :User moves the cursor over an element.

m onnouseout :User moves the mouse pointer off of an element.

m onnmousedown:User moves the mouse pointer over an element, presses the mouse button down,
and holds it down.

m onnouseup:User releases a held mouse button.

m oncl i ck:User clicks an element with the mouse pointer.

m ondbl cl i ck:User double-clicks an element with the mouse.

m onkeypress:User presses and immediately releases a key on the keyboard.
m onkeydown: User presses and holds a key on the keyboard.

m onkeyup:User releases a depressed key.

m onf ocus:An element becomes the focus of the user’s attention, as a form field might when you
beqin to type in it.

m onbl ur :An element loses focus because the user chooses to focus on a different element.

m onchange:User changes the contents of a form element or selects a different check box, radio
button, or menu item.

m onsel ect :User selects a check box, radio button, or menu item from a form.
m onsubm t: User clicks a form’s Submit button.
m onr eset : User clicks a form’s Reset button.

Not every element supports every event attribute. For example, onsubni t and onr eset work with
the<i nput > element in a form because you use that element to create submit and reset buttons. The
two attributes don’t work with the <p> element because you can’t submit or reset a form with a paragraph.
Appendix A lists which event attributes work with which elements.

Including scripts in your HTML page

Linking a script to an HT ML element that you plan for a user to interact with is simple. You place the script
code in the <scri pt > element in the document header. Then you attach the script name to an event
attribute in an HTML element. Listing 12-1, for example, specifies that when the user clicks the submit
button, the browser should verify that the user filled out both fields in the form.

Listing 12-1: Verifying the User Fills Out Both Form Fields

<htm >
<head>
<title>Linking scripts to HTM. pages</title>
<script |anguage="j avascript">
function checkSubnmit (thisForm) {
if (thisForm FirstNanme.value == ‘") {
alert('Please enter your First Name.’);

return fal se;

}

if (thisForm Last Nane. val ue ==) {
alert(' Pl ease enter your Last Nane.’);
return fal se;

return true;
}
</script>
</ head>

<body>
<f orm met hod="POST" action="http://ww. someURL. conl "
onsubm t ="return checkSubmt(this);">
<p>
First Name: <input type="text" name="FirstNanme">

Last Name: <input type="text" name="Last Nane">

<i nput type="submt">
</ p>
</fornp
</ body>
</htm >

Notice that the value of the onsubni t attribute, ret urn checkSubmi t (t hi s); ,includes the name
followingf uncti on in the <scri pt > element, checkSubmi t . This tells the browser to run the
checkSubm t function in the script on this form. You may want to have several different sets of
instructions for the browser to run, depending on what a user does with the page. In that case, store each
set of instructions as its own function, and link the function to the event attribute.

If this script looks like Greek to you, don’t worry. The “Form validation” section later in the chapter
walks you through everything going on in this script.

The double parentheses following the name (in both the script and the attribute values)
are part of the scripting syntax. You can pass parameters to the script within the parentheses so you can
reuse a single script for several elements. When you use someone else’s script in your Web page,
carefully read any instructions that come with the script. Verify whether you have to put any information in
the parentheses or can leave them empty.

You can also put scripts directly into the value of an event attribute (instead of storing them in the
document header). This technique works best for short scripts like the one in the “Image rollover” section
later in the chapter.

Going with a Client-Side Script

As you might expect, there’s more than one way to skin the scripting cat. Because a script is a set of
programming instructions, you must have an application that can understand and respond to those
instructions. Your two options are the Web browser or the Web server. Scripts that Web browsers read
and respond to are called client-side scripts. Conversely, scripts that Web servers read and respond to are
server-sidescripts. (All the scripts we discuss in this chapter are client-side scripts.)

Server-side scripts are commonly used with data that users submit through HT ML forms. They also
help databases and other applications connected to a Web page. You can learn more about the role these
scripts — often called CGI scripts — play in a Web site in Chapters 10 and 14.

When you include client-side scripts in your Web pages, the browser handles all script processing after a
visitor to your site downloads the page. When you use a client-side script, you rely on the browser to
interpret and run the script. That reduces the amount of processing your Web server has to do; it also
limits how many times the browser must contact your Web server to change the way a page looks or
behaves.

However, different browsers support scripting in slightly different ways; you may have to do a little extra
work to make sure your script runs successfully on all browsers. Older versions of the popular browsers
(3.0 and earlier), don't handle scripting well — and text-only browsers can't handle it at all — so if you
include scripts, remember that their benefit is lost on users who run those older browsers.

When you download a script from the Web or have someone write a script for you,
be sure to identify which browsers the script works with. You want scripts that work with as many browsers
as possible so you can support as many different users’ browser configurations as possible. A good
programmer can create scripts that work well in different browsers, and will provide documentation for the
script that specifies which browsers it works with. You should also state whether your script encounters any
known problems when it runs in particular browsers.

May We Suggest Some Nice JavaScript?

You probably won't be surprised to find out that there’s more than one language for writing Web page
scripts. JavaScript was created by Netscape to work with the Navigator browser and VBScript was created
by Microsoft to work with Internet Explorer. For quite a while, the two scripting languages competed heavily
for developer favor, but in the end, JavaScript won and actually became a standard known as ECMAscript
(even though everyone calls it JavaScript).

Older browsers (versions 3.0 and earlier) don't work well with scripts written in rival
languages. JavaScript scripts don't work nearly as well in Internet Explorer 3.0 as they do in Navigator 3.0.
VBScript is even more restrictive; scripts written in it won’t run at all on anything but Windows machines
using Internet Explorer as the browser.

More recent browsers have all standardized on JavaScript — thus most of the scripts you’ll find are written
in JavaScript. (So are the ones you’ll see later in the chapter.) If you choose to learn a scripting language,
choose JavaScript.

You don’t need to know much about programming to use scripts in your Web page. All you really have to
understand is how to use event attributes to link scripts to common user activities (such as clicking a
submit button or changing some text). You can download canned scripts from several different repositories
on the Web (look for a list at the end of the chapter) and then slap them into your page. That's really all
there is to it.

You can use scripting to create some advanced user interfaces that respond to just about
everything a user does. However, such scripts will be particular to your site; you'll have a harder time
finding canned scripts that meet your needs. For standard dynamic features (such as form validation and
image rollovers), you can find what you need on the Web. For more complicated features (or those
specific to your site), you'll need to work with a programmer (or become one yourself) to create the
necessary scripts.

Finding Scripts Online
Here are some good online sources of free scripts to add to your Web pages:

m The JavaScript Source:http:// javascript.internet.conl

m JavaScript Kit:www. | avascriptkit.com

m Java-Scripts.Net:www. | avascri pts. net/

m JavaScript City:www. | avascriptcity. com

The following three sections look at the kinds of JavaScript scripts you can easily add to your Web pages,
even if you don’t know much about programming. They illustrate various approaches that programmers
use to write scripts — and introduce basic concepts you'll need to work with scripts in your own pages.

Image rollover

Listing 12-2 shows an image rollover — short and sweet, it stores all scripting commands for the browser
in the event attributes for the <i ng> element.

Listing 12-2: Image Rollover

<htm >

http:// javascript.internet.com/

<head>

<title>A sinple inage rollover</title>
</ head>

<body>
<p>
<ing src="inmge_one.gif" alt="button" border="0"
onnouseover="this.src = ‘imge_two.gif’ ;"
onnouseout ="this.src = ‘inmage_one.gif’ ;">
</ p>
</ body>
</htnm >

The<i ng> element initially references i mage_one. gi f, as shown in Figure 12-2.

A A simple image rollover - Microsoft Intermet Expl... M= E3
| File Edit View Favorites Tools Hulp [& |
i
R
2] Done [1= wiy Computer P

Figure 12-2: When the page loads, it displays the image referenced in the image sr ¢ attribute.

The instructions in the onmouseover attribute tell the browser to change the source oft hi s element (the
image element) to i mage_t wo. gi f when a user moves his or her mouse pointer over the image. This
effectively rewrites the <i ng> element so it reads <i ng src="i mage_t wo. gi f " >.Figure 12-3 shows
that the browser does indeed display a different graphic when the mouse pointer moves over the image.

A A simple image rollover - Micresoft Interme Expl... MEE
| File Edit View Favorites Tooks Hlp [& |
|
Book
Mook
) Done || 1=y Computer e

Figure 12-3: When a mouse pointer moves over the image, the browser displays a different graphic.

The instructions in the onmouseout attribute tell the browser to change the source of the <i ng> element
back to its original value (i mage_one. gi f) when the mouse pointer moves off the image.

The URLs in this example are relative, which means the images must reside in the same folder as
the HTML for this markup and scripting to work. If you want to store your images in a separate directory,
you can — just reference the image in the script accordingly. For instance, if all images lived off the main
Web server root directory in a directory called i nages, the <i ng> element would change to something
like this:

<inmg src="/imges/i mage_one.gif" alt="button" border="0"
onmouseover="this.src = ‘/inmages/inage_two.gif’;"
onmouseout ="this.src = ‘/imges/i mage_one.gif’ ;">

You can read more about relative URLs in Chapter 3.

There are about as many ways to create image rollovers as there are images. (Okay, maybe
notthat many, but you get the point.) The rollover shown here is just one example; as you search for
scripts to use in your page, you may find others. Be sure to read any notes or documentation included with
the script you choose; find out where to put image names to make the script work.

Rollovers are an easy way to add some nice effects to your site, but don’t overuse them.
If images are constantly changing on your site, users may be distracted from the important content.
Choose a few places to use rollovers — say, your main navigation — and use them consistently across
your site. You'll get the benefit of the effect without making your visitors seasick.

Pop-up windows

A common use for scripting is to open new links in separate windows and manage the size and
appearance of the browser window. Listing 12-3 attaches scripting instructions to a link that forces the
linked document to open in a new 300 x 200 window that doesn’t have a status bar, menu bar, or scroll
bars, and that isn’t resizable, as shown in Figure 12-4.

Listing 12-3: Pop-Up Window
<htm >
<head>
<title>A pop-up w ndow</title>
</ head>

<body>
<a href="javascript:void(0);"
oncl i ck="w ndow. open(‘ http://ww. dummi es. com , ‘popupWn’,
‘tool bar=0, |ocation=0, status=0, nenubar=0, scrollbars=0, resizable=0,
wi dt h=300, hei ght =200, | eft=20,top=20")">Dunmm es. conk/ a>
</ body>
</htm >

A pop-up window - Mioasoft Inteimn Explore =] E3

|Hl-u Edit Wiew Favorides Tookl Help

Chirvomes com

Figure 12-4: You can use JavaScript to open a Web page in a new window and carefully control the
display of the window.

The <a> element in the preceding code sample is listed across several lines for display
purposes; however, you'll need to remove the line breaks if you add this code to your HTML pages and put
the entire anchor tag on a single line. Random line breaks in JavaScript can cause errors on the page.

Notice that the value of hr ef isj avascri pt: voi d(0); rather than the actual URL the link points to
(ht tp: // www. dummi es. com). The link is part of the JavaScript, but you include the

javascri pt:voi d(0); sothe browser knowsto move pastthe hr ef attribute value and look to the
scripting code to find the URL.

http://www.dummies.com

Theoncl i ck event attribute holds all the instructions the browser needs to open the link in a new
window, starting with wi ndow. open that instructs the browser to pop open a new window. The specifics
for the window follow in the parentheses:

m http://ww. dunm es. comThe URL to display in the window.

= popupW n:A name for the window.

m t ool bar=0:Don’t display the toolbar.

m | ocati on=0:Don't display the location bar.

m st at us=0:Don'’t display the status bar.

= nenubar =0:Don't display the menu bar.

m scrol | bars=0:Don't display the scroll bars.

m resizabl e=0:Don’'t allow the window to be resized.
m Wi dt h=300:Sets the window width to 300 pixels.

m hei ght =200:Sets the window height to 200 pixels.

| ef t =20:Positions the new window 20 pixels from the left of the parent window.
m t op=20:Positions the new windows 20 pixels from the top of the parent window.

This code turns off all the menus and other window features by setting their values to zero (0). You can
turn any of them on by changing the zeros to ones (1). Also note that the values for toolbar, location, and
other window specifics aren’t included in quotation marks. JavaScript doesn't require that you use them.
Remember also that even though this code is in an <a> element, all these parameters are part of the
JavaScript code, not the HTML code; therefore, they must abide by JavaScript rules.

Pop-up windows are helpful if you want to call someone’s attention to some special
content immediately, but they can backfire on you if you use them too much. Many Web sites use pop-up
windows to deliver ads, so users are becoming desensitized (or hostile) to them and simply ignore them
(or install software that prevents them). Before you add a pop-up window to your site, be sure it's
absolutely necessary; consider how it affects the user experience if it's angrily slammed shut.

Form validation

A common use for JavaScript is to verify that users have filled out all the required fields in a form before
the browser actually submits the form to the form-processing program on the Web server. Listing 12-4
stores a form checking function, checkSubmi t , inthe <scri pt > element of the HTML page, and
references it in the form’s onsubni t attribute.

Listing 12-4: Form Validation

<htm >
<head>
<title>Linking scripts to HTM. pages</title>
<script | anguage="j avascript">
function checkSubnmit (thisForm) {
if (thisForm FirstNanme.value == ‘") {
alert('Please enter your First Nanme.’);
return fal se;

}

if (thisForm LastNane.value == """) {

http://www.dummies.com

alert(' Pl ease enter your Last Nane.’);
return fal se;

}

return true;
}
</script>
</ head>

<body>
<f orm met hod="POST" action="/cgi-bin/formprocessor.cgi"”
onsubm t ="return checkSubmt(this);">
<p>
First Name: <input type="text" nanme="FirstNanme">

Last Nanme: <input type="text" name="Last Nane">

<i nput type="submt">
</ p>
</fornp
</ body>
</htm >

This script performs one of two operations if either form field isn’t filled in when the user clicks the submit
button:

m ltinstructs the browser to display a warning (the text is specified in the al ert) to let the user know he
or she forgot to fill in a field.

m It returns a value of f al se to the browser, which prevents the browser from actually submitting the
form to the form processing application.

If the fields are filled in correctly, the browser doesn’t display alerts and returns a value of t r ue, which
tells the browser that the form is ready to pass on to the Web server. Figure 12-5 shows how the browser
displays the alert if the first name field is empty.

A Linking scripes i HTEL papes - Micasoft Inteimet Explomes
| Fla it View Faworites Tools Help -
2
First Mame
Last Mume: |las1
Submit Query
Microgof Internot Explarer
!3 Pleass enter your First Hame.
L — xl
] Done [EE My Compitar 7

Figure 12-5: A good use of JavaScript is to validate form data.

Although this example only verifies whether users filled out the form fields, you can create more
advanced scripts that check for particular data formats (such as @ signs in e-mail addresses and only
numbers in phone number fields). JavaScript is a robust Web programming language, so your form

validation can be as simple (or as complex) as you need it to be.

When you create forms that include required fields, always include client-side
scripting validation to catch missing data before the script can even find its way back to the program that
processes it on the server. Users get frustrated when they take the time to fill out a form only to be told to
click the Back button in their browsers to provide missing information. When you use client-side scripts, the
script catches any missing information before the form page disappears so users can quickly make
changes and try to submit again.

Chapter 13: Making Multimedia Magic

Overview
In This Chapter
m Understanding your multimedia options
m Using media wisely
m Linking to audio and video
= Embedding media

More and more Web sites are using multimedia. As a developer, you can now integrate different media
types, such as audio, video, and/or animation clips, in a Web page to make your pages come alive.

Multimedia has had an interesting evolution. In the beginning, user bandwidth didn’t
allow multimedia elements to be incorporated; more recently, user bandwidth has increased, and
multimedia is being used everywhere. However, in an effort to improve usability and design methodology,
designers are being more conservative with their use of multimedia elements.

Many concerns must be addressed before you add media components to your page. For example, will the
media type function properly on different platforms, or will the user have to use a plug-in application to see
and hear the media? These are only two of the questions this chapter answers.

Although most Web technology has begun to embrace the concept of standards, multimedia is
one area that has yet to follow suit. In this chapter, you get a look at some of the diverse audio and video
formats, as well as several different players required for users to use these formats. There aren’'t any
consistent standards for embedding these functions (although the W3C uses the <obj ect > element);
therefore, browsers use different methods for embedding these functions.

Most methods used by developers (and mentioned in this chapter), do not follow the HTML
standard. We rarely break from our dedication to the standard; however, if you're going to work with
multimedia, you need to be aware of the most effective use of media — and for now, that means
sometimes using non-standard methods.

Using Media Wisely

If you're considering adding multimedia to a Web page, you should be able to identify its function. For
example, a band would most likely want to allow users to download an MP3; however, there is little reason
foryahoo. comto allow you to play some background music while you search the Web.

If you adhere to a few basic dos and don'ts as you work with multimedia, your Web page will benefit vastly:
m Understand the role and function of your media — don't just include audio or video for the fun of it.
m Compress your fles — audio and video files can be quite large.
m Provide an of f function for users if a media program starts automatically.
m Flash intros should allow users to skip them — add a Skip Intro button.
m Provide a link to all necessary media players.

m |dentify key information about your media, such as file sizes and types — users need to know what
they're in for.

Before getting started, you may want to check out some sites to see how other developers are using
multimedia elements. The following three are excellent:

= Www. egonedi a. com

= Ww. cnn. conml

® Www. spoont heband. com

Your Web Multimedia Options

As you select and add multimedia features to your Web page, you have to decide

Which file format best suits your needs, as well as which are the most compressed.

Whether to use a separate plug-in media player. Remember, not all browsers automatically support
every media format.

How to integrate media files into the Web page. You have three basic ways to integrate media files:
Link to the external media file, embed and present the clip as an internal file, or streamthe media.

Audio formats

You've probably heard of the more common formats in the following list, but several other types are also
worth looking at. Just remember that when you select the audio format, you should also identify three
other crucial factors: your target audience, the players or plug-ins required, and the way you want to
present audio on your page.

Check out this list of format options:

AU (or Sun/NeXT audio): A compressed audio format defined for Unix.

AIFF (Audio Interchange File Format): A common audio format used for the Mac OS. The format
does not support any kind of compression, so it tends to produce large files.

MP3 (MPEG-1, Layer Ill): One of the most popular audio formats used on the Web. This format uses
a compression ratio that can reduce file sizes to about a megabyte per minute — a drastic reduction in
file size — by removing the part of the audio spectrum that is largely beyond the range of human
hearing. Because an MP3 file preserves nearly all fie contents that the human ear can hear, it retains
near-CD quality.

MIDI (Musical Instrument Digital Interface): The MIDI file format is actually not an audio format, but
rather a digital representation of a sound. It was originally created to allow sounds created on one
keyboard to be played on another without losing any quality. MIDI is now used to enable electronic
instruments and sound cards to communicate with each other. Instead of representations of sounds, a
MIDI file contains instructions that tell the computer or instrument how to produce the music (which
makes the file size remarkably small). The user's sound card reads these instructions and then
produces the notes.

QT (QuickTime) and RA (RealAudio): The QT format works only with the QuickTime player. Same
thing for RA (Real Audio) files. You can find out more about these formats in the section, “Media
Players for Audio and Video,” later in this chapter.

RMF (Rich Music Format): An audio format, defined by Beatnik, that encrypts data and can contain
both recorded audio and MIDI sequences. RMF file sizes are typically small enough that audio for a
Web site’s interface can be downloaded in one file. This file type requires Beatnik's Player and
JavaScript Music Object to play the files, so it’s not used as often as the other types listed here. Check
outwww. beat ni k. comfor more information.

SWA (Shockwave Audio): A compressed audio format, similar to MP3, that produces small files and
retains most of the audio integrity. As the author, you can decide the compression ratio: the higher the
ratio, the smaller the file. Keep in mind, however, that a smaller audio file also sacrifices some sound

quality.

SWF (Flash): Animation format with built-in sound capabilities that can also stream files. SWF stands
for Shockwave File Extension. Sound can loop in the background of a SWF animation or be triggered
by a particular frame or event. As a binary vector format, Flash creates small files that stay small even

when they contain sound.

= WAV (RIFF WAVE): Developed by Microsoft and IBM, this is the common audio file format used for
Windows. Even when compressed, WAV files are still comparatively large.

= WMA (Windows Media Audio): Microsoft format for its new Windows Media Technologies — a suite
of utilities for creating, serving up, and viewing streamed multimedia (including high-quality audio).

Video formats

Video publishing onthe Web has seen a jump in the last few years. In the past, online video projects cost
a lot of money to produce — and even more money to publish. These days, however, anyone with a digital
video (DV) camcorder can capture images and publish them on the Web. Video is not yet where
developers would like it to be — almost everyone has seen a fuzzy image or two — but if visual quality is
not as important (for your purposes) as access, publishing your video on the Web can be relatively easy.

The first step in getting a handle on video is to recognize video formats. The most common are . nov,
.avi,and. rv. As the designer, it’s your job to include a pointer to the appropriate player; most of the file
types in the following list require a specific player to be viewed:

m .avi:AVI (audio/video interleaved), video format for Windows.
m .dcr:Movies created with Macromedia Director.

m .mov:Format for QuickTime movies.

.mpg:Created by the Motion Picture Experts Group. This format is a widely used standard for digital
compression of moving images.

.qt:A QuickTime movie file type from Apple.

.qt3: QuickTime 3 provides an advanced compression format for video, audio, MIDI, animation, 3D,
and so on.

.rv:Real Video, a format for streaming video on the Web, optimized for low-to-medium-speed
connections.

.viv:VIVO format for the compression of streaming video, particularly over low bandwidth.

Animation

For animation, there's only one superstar. Flash has taken over Web design (no cheap jokes about the
Planet Mongo, please). Flash provides movement and images that are sleeker and easier to use than ever
before.

For a look at what Flash can do, visit wwv. f | ash99good. cont . Unlike plain HT ML pages, however,
Flash-enabled Web pages require a Flash plug-in before visitors can view them. When they've
downloaded the player, users don’t have to worry about it again until a new version of Flash is unveiled
(about every one to two years).

Don’t underestimate the amount of time it takes to learn Macromedia’s Flash application.
Like other graphics applications (such as Photoshop or Dreamweaver), the program can be rather
daunting to master and requires dedication.

Most users like Flash animation because the images in Flash movies — which don’t look like movies at all,
but more like moving Web pages — are clean and smooth. All in all, we like Flash and recommend using
it, if you have the time to learn howto use it properly.

Flash is a topic worthy of an entire book. If you would like to explore it more fully, we recommend

visiting Macromedia’s site at ww. macr onedi a. com If you feel like you need an entire book, we suggest
theFlash MX Bible by Robert Reinhardt and Snow Dowd Macromedia Flash MX For Dummies by Gurdy
Leete and Ellen Finkelstein (both published by Wiley Publishing, Inc.).

Media Players for Audio and Video

Media can be stored in any number of formats these days; our need to store and transmit information in
this form has resulted in numerous media-rich players that handle all audio, video, and other media
formats. RealOne Player tries to be the player of choice — but with the advent of new compression
formats (MP3, MPEG-4, and so on), developers and users alike have to upgrade constantly.

Plug-in applications are programs that users can download, install, and use as a part of their Web
browsers. This type of application initially began with Netscape, when users could download, install, and
define supplementary programs for audio or video. However, these applications were called “helper
applications.” This system is still used when you link to a media file.

Now, users can download plug-in applications that the browser recognizes automatically — these
applications plugin to the browser. Once recognized, the plug-in allows all functions to be integrated into
the rendered Web page (for example, when a media file isembedded in a Web page).

Users can download any number of possible plug-ins. Most users, however, wait until they need a
particular plug-in before they download it.

RealNetworks

RealNetworks (then Progressive Networks) started the streaming audio craze in the mid-1990s — and
soon independent players were popping up everywhere. RealNetworks went through a stage of production
where versions of its software didn’t support older versions of its own media formats — in short, the whole
thing was a mess.

Now, however, RealNetworks has released RealOne Player, which provides an all-in-one player — it does
streaming audio and video, constructs MP3 libraries, and can be used to burn CDs. You must have the
RealOne Player to listento . ra or . rv files.

Manyexperienced multimedia users prefer MP3 players (such as WinAmp or
Sonigue— or iTunes for the Mac), and streaming services such as Shoutcast. However, most less-
experienced users out there are familiar with the RealOne Player. If you want to reach them where their
audio preference lives, you can download the RealOne Player at ww. r eal . com

QuickTime

We like QuickTime, created by Apple, although it doesn’t have the wide range support that the other
players have. QuickTime supports most media formats, and supports about the same functionality as the
other players mentioned in this section.

The only thing QuickTime can’'t do is rip MP3s or burn CDs. (That sort of thing is left up to iTunes, another
Apple product.) QuickTime is also compatible with Flash, Cakewalk, Premiere, and other multimedia
tools. Download a copy of this player at wwv. appl e. comf qui ckti ne.

Windows Media Player

The proprietary Windows answer to an all-in-one player has many of the same advantages as the
RealOne Player. It supports streaming audio and video, DVD playback, encoding and burning audio files,
as well as other multimedia-related functions. You must have the Windows Media Player to listen to . wnp
files. Download the Windows Media Player at

www. m crosoft. com wi ndows/ wi ndowsnedi a/ pl ayers. asp.

Linking to Audio and Video

One method of getting users to access your multimedia content is by adding a hyperlink that leads to the
audio or video file. This method is bar-none the easiest delivery method you can choose.

You can link to most audio and video file types (except for streaming formats). Here’s how it works:
1. You use the <a> element to provide a link to the media file, like this:

2. When the user clicks the hyperlink, the media file opens in a separate media-player window.

We recommend providing your users with information about what they will be
downloading. For example, you could provide the file format, size, and URL location. You should
also provide a link to the appropriate media player in case your users have to download it first.
Figure 13-1 shows a link to an MP3 file to download.

3 Anthropes Muslc - Microseft Intemet Exploses
| Eile Fdh View Faworiles Tools Help
'. Wlﬂ kg e ittt i el L abmbiuse Woorkahvap bl j (';'L-I'I_

Brazil

| ¥
1 m CHORMHHO (shoe

] Do S @ et
Figure 13-1: This site shows a link for downloading an MP3 file.

You cannot link to streaming formats. If linked, a streaming format down- loads like any
other media file, and will not play until completely downloaded — that is, it won't stream.

When you've created a media file, using one of the file types defined in the previous sections, you point to
the file by using the hr ef attribute, like so:

Click Here to listen to a song. </ a>

Because we use arelative address for this audio file, the file must be located in the same directory as the
Web page. If you wanted to link to a song not stored on your sever, you could point to the resource by
using an absolute address, like this:

Click Here to listen to a song. </ a>

When the user selects the link, the appropriate media player opens, and the audio file plays. The following
isa complete example of the markup used to link to an audio file:

<htm >

<head>

<title>Anthropos Arts</title>
</ head>

<body>

<p>One popular formof nmusic in Colonbia is the CUVBI A (koom bee-ya).
It is typically in 4/4 tine.</p>
<p>Exanpl e song: "La Piragua" / "The Little Boat"</p>
<p>Downl oad "La Piragua” on np3
her e</ a></ p>
</ body>
</htm >

When the user selects the hyperlink to play an audio file, the browser looks for an appropriate player.
If the user doesn’t have an audio player installed (oops), the browser prompts the user to save the file. A
dialog box may also appear, mentioning that the file is being saved to the user’s hard drive.

If you're linking to someone else’s audio or video file, make sure you have his or her
permission to do so. (Look before you link.)

Embedding Audio and Video Files into Your Page

Embedding media components enables you to actually make media an integral part of how your Web
page works. When the user activates the media file, it's played as part of the Web page — a separate
window is not needed. Here’s how it works:

1. You define controls that allow the user to activate the file.
2. The user clicks (for example) a Play button to play file is activated.

For example, in Figure 13-2, clicking Play activates a song, which plays from within the Web page
— no separate window needed.

Edit Wiew Favertes Tosls (elp

&) Dune L My Computer Fl
Figure 13-2: A console (defined as a control) is visible in the Web page.

Although embedding a Flash animation file into your Web page has its own quirks, the concepts
remain the same. Once embedded, a Flash movie begins the moment the user accesses its browser
window. In this case, the user need not even activate a control.

You can use the <enmbed> or <obj ect > element to embed a media file. Originally, developers used the
<enmbed> element to embed a media file — not so today. Why? Well, the HTML standard doesn’t support
the<enbed> element (oh, that). This state of affairs is difficult for developers because Netscape
traditionally supports the <enbed> element, whereas Internet Explorer supports the <obj ect > element
(which is officially part of the HT ML standard). Thus the browser wars continue.

To embed a video, you can use either the <enbed> or the <obj ect > element. As with media files,
however, neither of these techniques will work in all browsers (namely, Netscape, Internet Explorer, and
Opera). Such differences in support mean that if you want to reach the widest possible audience, you
should provide a link and let the user download (or stream) the video file.

Okay, some of you will have an irresistible craving to embed a media file. Just remember: There are
already several different ways to embed media, and we don't have the space to cover each option. To
keep from spoiling your fun, however, we can provide you with a few examples.

Using the <embed> element

One of the most common ways to embed media is to use the <embed> element. Here's an example:

<htm >

<head>

<title>Ant hropos Arts</title>

</ head>

<body>

<p>One popular formof nmusic in Colonmbia is the CUVBI A (koom bee-ya).
It is typically in 4/4 tine.</p>

<p>Exanpl e song: "La Piragua" / "The Little Boat"</p>

<p>Play "La Piragua":
<enbed src="http://ww. ant hr opos. or g/ nedi a/ np3/ 1 aPi r agua. np3"
autostart="fal se" w dth="150" hei ght ="15"
control s="snal | consol e" >her e</ a></ p>

</ body>

</htm >

In this example, we used several attributes to define media properties. In addition to the attributes used in
this example, you can add a few more:

m src="fil enane" :ldentifies the source file.

m autostart="fal se | true":Use this attribute to require sound to play automatically when the
document renders, or to require users to activate the control.

m control s="console | smallconsole | playbutton | pausebutton | stopbutton |
vol unel ever ":Thecont rol s attribute defines the type of control that will be displayed and
serves as the interactive trigger for the user.

m wi dt h="pi xel ":Thew dt h attribute defines the width for the control being used.
m hei ght =" pi xel ":Thehei ght attribute defines the height for the control being used.

m | oop="n" or="true | false":Thel oop attribute enables you to specify the number of times
an audio file should loop. The default is 1.

m align="left | right | center | justify":Thealign attribute functions the same as it
does when used with the <i ng> element. The defaultis | ef t .

Embedding the Windows Media Player

If you use the <enbed> element, Internet Explorer users may not be able to access the media file.
Therefore, if you're trying to reach a large audience, another recommended method is to embed the
Windows Media Player as a part of Internet Explorer and Netscape. Although doing so won’t reach all
users, it will reach more than you'd reach by using the <enbed> element.

Providing a link to the necessary media player helps users access your media.

The Windows Media Player is normally embedded into a page for Internet Explorer as an ActiveX Control
using the <obj ect > element (this does not work on Macs). For Netscape, the player is incorporated by
using a plug-in defined by the <enbed> element. If you use this technique, you can define the <enbed>
element within the <obj ect > element (is that slick, or what?) — allowing this method to work for both
Internet Explorer and Netscape — like this:

<obj ect id="nedi apl ayer" w dt h=320 hei ght =310
cl assi d="cl si d: 22d6f 312- bOf 6- 11d0- 94ab- 0080c74c7e95"
codebase="http://activex. m crosoft.com activex/control s/ npl ayer/
en/ nsnp2i nf . cab#versi on=5, 1, 52, 701"
st andby= "l oadi ng nedi a pl ayer" type="application/x-ol eobject">

<param nanme="fil enane" val ue="novi e. avi ">

<par am nanme="autostart" val ue="true">

<par am nanme="showcontrol s" val ue="true">

<par am nanme="showst at usbar" val ue="true">

<enbed type="application/x-npl ayer2"
pl ugi nspage="http://ww. m crosoft.com wi ndows/ nedi apl ayer/"
src="vi deo/ novi e. avi "w dt h="320" hei ght ="310" nane="nedi apl ayer"

autostart="true" showstatusbar="1" showcontrol s="1">
</ enbed>
</ obj ect >

All the items shown here in bold are variables that you would want to define yourself. The rest you can
leave alone. Note, however, that you may want to change a few variables such as aut ost art .

Defining background audio

Internet Explorer supports a function that allows background music. First, define the Internet Explorer
version:

<htm >

<head>

<title>Anthropos Arts</title>

</ head>

<body>

<bgsound src="http://ww. ant hr opos. or g/ medi a/ np3/ | aPi ragua. np3" >

<p>One popul ar formof nmusic in Colonbia is the CUMBI A (koom bee-ya).
It is typically in 4/4 tinme.</p>

<p>Exanpl e song: "La Piragua" / "The Little Boat"</p>

</ body>

</ htm >

The<bgsound> element is not officially part of the HTML standard, so we don’t recommend using it. If
you do, you have to use the sr ¢ attribute to define the audio file's location. (The only audio formats
recognized with this tag are . wav,. au, and . m d.) You can also use al oop attribute to define how many
times the audio file should loop. The values for the | oop attribute can be a number (I oop="5") or
infinite (loop="infinite")toloop the audio file until the user leaves the Web page or goes into a
deep trance (just kidding).

You can also indirectly define background music for Netscape by using an <enbed> attribute. For your
users to enjoy some background music, you use the <enbed> element and set the aut ost art attribute
totrue (kembed aut ostart="true">).

Keep in mind that these attributes are not a part of the HTML standard. In the future, as Internet
Explorer and Netscape provide stable support for the <obj ect > element, you may want to make the
switch and use i.

Streaming Audio and Video

To master streaming media (audio or video), you must first understand how a Web server, HTTP, and your
browser work together. A Web page is stored on the Web server. When you open your browser and
request a Web page, that request is sent to a Web server that then sends the information to the browser.
The transaction is completed quickly, and then the Web server disconnects and goes on to handle other
requests from other users.

On the other end of this transaction, your browser accepts the information from the Web server, renders it
on the screen, and then ignores the Web server until you select a link.

On both ends, the server and the browser open and then close the transaction quickly. This scenario
makes sense when you're dealing with basic HTML pages or image files, which have no need for a
continuous connection.

Audio and video file types, on the other hand, contain an additional variable that affects how they behave:
time. Audio and video files are considerably larger than images or HT ML files, and take longer to
download, so the open-and-shut scenario we just described doesn’'t work well at all for audio or video;
users end up waiting impatiently for the download to complete.

Streaminguses new Internet technology that divides an audio or video file into packets sent continuously to
the user. The streaming software on the other end receives these packets and reconstructs the audio file;
the streaming player plays the packets as they're received.

One disadvantage to streaming media is that users with dialup connections might have
problems with streaming media; the better (faster) the connection, the better the quality.

However, many developers point out that the streaming media option is used more to improve access
(because the file can be viewed before the entire file has been downloaded) than to improve delivery
quality. The trade-off — in effect, chancy quality for worldwide access — produces a video file that may be
fuzzy at times, or an audio file that may occasionally pop or hiss at the user. Of course, streaming
technologies are still relatively young; as their popularity grows, the technology will improve.

Streaming video behaves much like streaming audio; however, video has two main types of streaming:
progressivestreaming and real-time streaming. Progressive streaming, done on demand, uses HTTP to
download a compressed video file from the Internet. Realtime streaming uses Real Time Streaming
Protocol (RTSP) to broadcast video to your browser; your browser must access a video-streaming server.

Setting up a streaming media file is similar to linking or embedding it — except the linked or embedded
media file is actually a metafilethat contains the URL locations of the media files to be streamed. If a
developer wants to set up a system that allows multiple streaming audio files (think online radio), server
software must be used. If just want to stream a few audio files, you can use a Web server instead.

When you're creating streaming audio, you need to create three files:

m Media file: As with all other methods, you need the audio file; if you're using RealNetworks, the audio
file should be created with RealProducer and have a . r mextension.

m Meta file: This text document points to where the audio file can be found on the server; if you're using
RealNetworks, the meta file should be created with a text editor and have a. r amor . r pmextension.

= HTML document: The HTML document should reference the meta file by using the <a> element.

Check with your Internet service provider to see whether it has a streaming-media server in place. If it
does, you won't have to use the Web server.

You can also embed a RealMedia file by using the <enbed> element. Just remember that the
<enbed> elementis not well supported.

Chapter 14: Integrating a Database into Your HTML

Overview

In This Chapter
m Understanding what a database can add to your HTML
= ntegrating a database with your Web pages
m Finding a host for your database-enabled Web pages

Databases can store vast amounts of information — from sales records to baseball statistics and more —
that you might want to make available to visitors to your Web site. Although you could hand-code
hundreds of Web pages with the data in the database, it would take nearly forever to put the site up — and
maintenance would be a nightmare. Instead, it makes much more sense to connect your Web site to the
database and let them work together to serve information. And that is exactly how thousands of Web
developers post and manage complex data on the Web.

Before you actually wrestle your HTML into a working relationship with a database, you need
to have some major items already in place. In particular, you need to have a Web server running a
program (often a custom-coded CGl script) that tells the database exactly what to do. (CGI stands for
Common Gateway Interface; when a Web page needs to connect to a database, the CGI script passes on
the instructions to the database.) Even with the most sophisticated techniques, you face a considerable
investment of time and work. That’s why this chapter gives you an overview of the process, what it can do
for you, and what to watch out for — so you can decide for yourself whether the payoff is worth the effort.

Understanding the Advantages of Using Database Technology on
the Web

First things first. A databaseis a bunch of data that has been organized in a way that makes it easy for
users to find individual pieces of information. You can organize, manage, delete, and add data to the
database, and depending on the database’s capabilities, you can access data using a variety of methods.
You can also store a lot of different kinds of data; pretty much anything that can be categorized can be put
into a database.

Oracle, MySQL, Sybase, and SQL Server are just a few of the databases out there, and chances are
you've heard of at least one of them. Later in the chapter, we take a look at the different kinds of
databases so you can begin to sort through your options and choose the database that is right for you (or
know what you're working with if your database has already been chosen for you).

The benefits of integrating a database with your HTML are striking:

m Databases hold and organize a great deal of information. In particular, databases maintain the
relationships between different pieces of data (for example, a link between an address and the person
who lives there). You can manage and keep track of data in a database more effectively than you can
in just about any other format.

m Advanced query languages such as SQL extract data from a database according to detailed
criteria. You can build these criteria into your Web page so that the page gets and displays only
certain pieces of data (such as all in-stock products immediately available for shipment, or all users
who have ordered a product in the last 15 days).

SQL stands for Structured Query Language, and it's a language for working with databases to
make the stored data more accessible.

m Your Web site can interact with the data in the database. For example, it can help people provide
you with information to plug into your database, such as product orders or contact information. They
don’t have to tell you over the phone or have a special application to access your database; all they
need is a Web browser and a URL to get to your site.

m Your Web site can update itself automatically as the data in the database changes. In effect,
you won't have to update your Web page at all. Each time the page loads, it gets the latest batch of
data from the database. All you need do is keep the database up to date.

Linking Databases to Your Web Page: The Basics

Imagine this scenario: You already have a database that catalogs products, prices, availability, and
customer data. (Maybe you're using Microsoft Access, SQL Server, Oracle, or FileMakerPro.) You typically
use the information in the database to create print catalogs and to manage customer orders you receive in
the mail and on the phone. Now you want to move the whole operation to the Web. You have a couple of
options:

m Create a static online catalog. You could use the information in your catalog to create a collection of
standard HT ML pages with all product information hard-coded into the page. You could create a
separate order form that users would fill out and either snail-mail or fax to you. Every time information
changesin your actual database, you have to change the data on the Web pages.

m Build an interactive online catalog on-the-fly. You could connect the database to your Web site
and create your catalog on-the-fly by using information pulled from the database in real time (rather
than hard-coded into the HTML). Users could place orders online and skip the mailbox, fax, or phone
all together.

These two approaches illustrate a tradeoff of know-how versus hassle factor. The first approach requires
the least technical know-how but will be (at best) clunky and difficult to maintain. The second takes
advantage of HTML and programming techniques to create a Web site that interfaces directly with your
database. It's easier to maintain — but it requires more technical know-how.

A bit about SQL

Structured Query Language, or SQL, is the syntax you use to work with data in a database. You
phrase your communications with a database as queries. Queries can be simple (say, searching the
database for allproducts without applying any other criteria) or they can bristle with com plexity — as
when (for example) you search a product database for all products from a particular manufacturer that
arein stock and then do an inventory of at least ten items that weren’t recently purchased by a
particular customer.

The rules you use to bind your search are called criteria. You also use SQL queries to write data into
the database, modify data that’s already in there, and (of course) delete data when it's outlived its
usefulness. If you use aform ona Web page to collect a user’s contact information, you have to
convert the information the user provides into an SQL query and then feed it into the database (more
about how this works in the next section of the chapter).

If you're going to build a Web site that integrates a database with your HT ML, it's wise to study up a bit
on SQL so you can properly phrase your communications with the database. Every database has its
own particular version of SQL, but they're all just slight variations on a theme; SQL itself follows some
consistent general rules. Therefore, if you're already familiar with one database’s SQL, you can easily
pick up another’s. If you aren’t at all familiar with SQL, no problem — the final section in this chapter
points you to some good references.

When you connect a database to your Web site, you essentially link a source of data (the
fields in the database) to your markup. When users request Web pages, the final results are a
combination of the HTML you've created and the data in the database. (We go into more detail on how this
all works in the next section,“What You Need to Add a Database to Your HTML.")

As you might imagine, integrating a database with your Web pages takes a serious
commitment, a substantial amount of work, and above-average technical know-how. But that’s not an
excuse to ignore the possibilities. Change can be good, after all, and as better tools emerge, the possibility
that you can link a database to your Web page without having to morph into a complete propeller-head
increases. In the long run, if you plan to make a lot of information available to users through your Web site,
linking a database to your site is a necessity. If you're not ready to make the leap just yet, the main

challenge is to get a strong sense of exactly how the pieces of a database-driven Web site fit together.
Then you can scope out not whetherto link database to your HTML, but how you want your site to interact
with your database.

What You Need to Add a Databaseto Your HTML

If you want to integrate a database with your HTML to give your Web pages access to the data in the
database, you need the following basics:

m A database program (running on a database server)
m Instructions embedded in your HTML pages that request information from the database

m A set of programming tools that enables you to communicate with both the database and your Web
server

UseFigure 14-1 to see how everything fits together to create a complete, data-driven Web solution.

i

e

F == ===
I | & a

k IL =& lL =

i~

| S e _q_,i

Wb broswsos Wb Tr'.m;' Ciatabase sorver
Figure 14-1: The components of a data-driven Web solution may exist on separate systems.

Your Web server, database, and the Web application that interfaces between the Web server
and the database can all peacefully coexist on the same system as long as there’s enough memory to run
all the applications without problems. However, Figure 14-1 shows the Web server on a system that runs
an intermediary Web application, and a separate system that houses the database.

The next several sections of this chapter delve into the particulars of each element.

A database

Of course, before you can create a data-driven solution that integrates a database with your HTML, you
need a database. Database programs come in all shapes and sizes, with a wide array of features, and to
fit all budgets. If you already have a database that you want to connect to a Web site, chances are you
won't need to choose a new one. There’s no need to reinvent your database just to fit your Web site. In
fact, attaching a Web site to an existing database that you already use for (say) taking customer orders or
tracking assets, gives you another creative way to work with that data.

If, however, you need to create a database from scratch, you'll need to investigate some of your options to
find the database that is right for you. The following sections give you a peek at some of the most popular
databases so you can get an idea of where to start looking.

This list of databases isn’'t exhaustive. There are many other databases you can choose
from, and if the database your data is currently housed in isn’t on this list, don’t panic. The goal of the list is
to introduce you to some examples of the types of databases you can choose from. Your Internet Service
Provider (ISP) or your company’s IT group are good resources to help you get a handle on what
databases your Web server can manage and to help you choose the best database for your needs.

Free and powerful: MySQL

MySQL is a free, open-source database that runs on most flavors of Unix (including Linux and Solaris), as
well as all versions of Windows from 98 to XP. Best of all, MySQL is available free of charge — and is a
robust database for the money (or lack thereof). Did we mention it’s free?

If you need to get a database up and running inexpensively (or you're just learning to work with
databases), MySQL is a good choice. It runs very well on Unix and Linux — the most popular platforms for
serving up Web pages — so it plays well with other major Web applications.

However, MySQL does have its limitations. If your MySQL database crashes (as every database eventually
will), you have to put more work into recovering backed up data than you would if you were using a
heavier-duty database (such as those we discuss shortly).

Because of its sketchiness in the area of retrieving lost data, this isn't the ideal database for
you if your site meets any of the following criteria:

m The site has to handle thousands of immediate transactions (as shopping sites or banks might).
m The site requires continuous updating.
m The site must recover from crashes quickly with minimal interruption of service.

In the real world, MySQL is great for lightweight to medium-weight Web sites. You can definitely run a
product catalog with it, or a museum-exhibit tracking site, or a school-attendance and grade-book system.

The only time you should seriously avoid MySQL is when you manage large numbers of financial
transactions. Otherwise you can count on MySQL to provide a solid database that will meet just about any
Web site need — and do it for free. To learn more about MySQL, visit ww. nysgl . com

Windows- and user-friendly: Microsoft Access

Microsoft Access has been around for a long time — it’s a popular database for storing key business
information (such as contact lists, inventory catalogs, and time-tracking systems). Access is a Windows-
only application, popular because it offers an easy-to-use system for creating the forms used to access the
database. You can run a Microsoft Access database on your company’s internal network, create a set of
custom forms, and install them on any Windows machine in the company — just as you would any
Windows application.

If you've never used a database before, have access to Microsoft Office, and are looking for a good
learning tool, Access might be a good candidate. Unlike the databases developed with database experts in
mind, Access is designed to be helpful and user-friendly; it plays nicely with other Office products.

Chances are you'll eventually build a Web site database using MySQL, Microsoft SQL Server, or another
(more powerful) database product. Because Access is so user-friendly, it tends to be slower than other
databases and not as robust.

If you have a legacy Access database and you want to give others access to it via
the Web, you can use Microsoft's Active Server Pages (ASP) to do so, as discussed later in this chapter.

To learn more about Microsoft Access, visit www. mi cr osoft. com of fi ce/ access/.

The big boys: Oracle, Sybase, and Microsoft SQL Server

Beyond MySQL and Access (and others in the small- to medium-size application world) are the big boys:
Oracle, Sybase, and Microsoft SQL Server — to name three of the most popular and well known. These
are the most powerful and versatile databases money can buy, and it usually takes quite a bit of money to
buy them.

The importance of good database design

If you've never worked with databases before and you're ready to try your hand at Access, MySQL, or
another lighter-duty database, be sure to spend some time getting a handle on good database design.
Although you must (obviously) learn how to create and manage databases, you’ll find that the actual
database design is at least as important as whether you can get the thing up and running in the first
place.

Database design refers to the way in which you organize that data in the database. You want your
organization to make sense from a data perspective, which isn't always the same as from a human
perspective. For instance, if you think of a person’s name, you most likely think of first name, middle

name, and last name as a whole entity. However, when you put together a database, you want to keep
each of those names in its own, separate field — doing so gives you more flexibility for searching.
Instead of searching for a generic name (which may return more names than you want to sift through),
you can search by first name, last name, middle name, or by some combination of the three.

Several general principles of a good database design are worth remembering. A good database

m Makes data as useful and accessible as possible to computer systems — not necessarily to
people, unless they know how to use those systems to best advantage.

m Is generic enough to accommodate new types of data.
m Is specific enough to manage the details of your data efficiently.

m Should be extensible so it can grow and change with your data needs. If you know (for example)
that presently you need only track products from one manufacturer — but may one day need to
track products from several — it makes sense to prepare the database now to manage multiple
manufacturers later.

The resources at the end of this chapter include books and Web sites that can give you a good look at
database-design technigues. Keep in mind, however, that no matter how much you read about good
database design, eventually you have to start creating and working with actual databases; there’'s no
substitute for real-world experience.

These databases feature the following:
= Complete security

m Immediate recovery from crashes using transaction rollback (a feature that restores a database to the
way it was right before the crash)

m Entire suites of plug-ins and applications that integrate seamlessly
m All the tools you need to create and manage huge databases

If you're just starting out with databases, remember that these products are not designed as
learning tools. Their complexty and industrial-strength features are more appropriate to invest in when you
need to build a large, robust database. Even then, the best advice we can give you is not to fork over the
big bucks until you've consulted with database- and Web- development experts to determine the best
collection of technology to meet your needs. If you're even thinking about buying Oracle (for example) or
integrating a Web site with an Oracle database, professional help is indispensable.

To learn more about Oracle databases, visit wwv. or acl e. com

To learn more about Sybase databases, visit ww. sybase. com

To learn more about Microsoft SQL Server, visit ww. ni cr osoft . cont sgl / def aul t. asp.

Instructions embedded in your HTML pages

Yes, it's true — HTML doesn’t include a single element or attribute for querying a database. (Skim
Appendix A, the complete listing of elements and attributes in HTML 4.01, if you don’t believe us.) There’s
no mention of the word database anywhere in there. Zip. Zilch. Zero. Nada.

Even so, you have to get those instructions for working with a database into your HTML somehow. The
typical way is to manage all database interaction through a programming or scripting language in
conjunction with the HTML in your Web pages. The scripting sits right in your HTML page, and some of it
may sit in other scripts that run on your Web server.

The good news s that you don't have to create these scripts yourself. Instead, you can choose from a
variety of Web-development or Web-applicationlanguages — or is that solutions?— the buzz-words for
these languages seem to change almost daily. Regardless of nomenclature, all such languages have one
thing in common: They help you extend the functionality of your Web page way beyond what HTML can
provide.

If you suspect that these languages — and some others covered in the book, such as JavaScript
(Chapter 12) and CGl (covered in this chapter) — might just all work together, provided you can guide the
display with HTML markup, you're right! This approach can create feature-rich Web sites that border on
software applications. Imagine a complicated Web site that manages customers, takes orders, directs
shipping, and uses all these technologies, along with database connectivity, to take Web sites far beyond
simple text-and-image-driven pages. (But will it make coffee ... ?)

The next three sections provide an overview of the most popular Web- application
development languages. They are intended to give you an overview of what your options are, not present
an exhaustive list. The list of resources at the end of the chapter will point you toward Web sites and books
that cover other Web development options and solutions.

PHP

PHP (sort of a redundant acronym that stands for PHP: Hypertext Preprocessor) uses a set of custom
tags that begin with <? and end with ?> that you embed into your HTML. When a user requests a Web
page, a PHP processor on the Web server interprets the tags, does things like connects to a database or
checks the date and time, and then replaces the PHP tags with the results of the instructions. If the
instructions request that the PHP processor query the database for all users named John Doe, the
processor does that, and then replaces the request in the HTML with the actual results of the request.

For example, this HTML uses the PHP echo() function and the HTTP_USER_AGENT variable, along with
some HTML, to print the name of the browser (formally called a user agent) that the person viewing the
PHP-enabled page is using:
<ht m >
<head>
<title>A sinple PHP exanple</title>
</ head>

<body>
<p>Hell 0. You are viewing this page with
<?php echo $_SERVER["HTTP_USER AGENT"]; ?>.
</ p>
</ body>
</htm >

And now for some superfluous, geeky information

Message to the geekiest readers of this book (that is, those with a little background in programming):
You can integrate ASP.NET with Visual Basic or other Windows applications, and you can integrate
JSP with Java applications. This means you can create faster, more powerful applications optimized
for a particular operating system in Visual Basic, C++, or Java and use either ASP.NET or JSP to take
the information from those applications and feed it to your Web page. (If you have no idea what you
have just read, you obviously go out and have fun on Saturday nights.)

When the Web server receives a request for the HTML page, it passes it off to the PHP application that
evaluates

<?php echo $_SERVER["HTTP_USER AGENT"]; ?>

to get the name of the Web browser and then replaces the function with the actual name of the browser.
The PHP application passes the HTML page back to the Web server, which in turn, sends it to the Web
browser.

Some JavaScript commands embedded in HTML pages are especially designed for the
browser to interpret and use after the page is downloaded. PHP tags, on the other hand, are intended to
be evaluated and be replaced bythe PHP application long before the HTML page even makes its way to
the Web browser. Browsers don't understand PHP elements; therefore, the server must process those
elements first.

If the user who requested this page were using Netscape Navigator 4.5 on a Macintosh, the results of this
HTML/PHP combination would be:

Hell 0. You are viewing this page with Mdzilla/4.5 (Macintosh; |; PPC).

Obviously, this example is very simplistic and doesn’t include any database calls. However, PHP uses
this exact same methodology to query databases. After you know PHP syntax and some SQL, the rest is

gravy.

PHP is an open-source Web-development application that runs on just about any operating system. You
often find it used with MySQL, but you can use it with just about any database. Of course, having some
programming experience is a definite plus if you're going to use PHP, but it's a good option if you're just
beginning to experiment with Web applications. You can get the goods on PHP at wwv. php. net .

ASP.NET and JSP

ASP.NET is Microsoft’s Web-application language; JSP is Sun’s Web- application language (based, of
course, on Java). Both work much like PHP; their proprietary tag structures are different, but everything
else is the same. When a user requests an ASP or JSP page from the server, the server hands the page
to the ASP or JSP processor. Then the processor interprets the custom codes, makes any callsto
databases and other applications, replaces the custom codes with text and markup, and sends the page to
the Web server to pass along to the Web browser. (Busy, busy, busy.)

The ASP.NET processor isn’t free (as you might imagine); however, JSP processors from Sun and other
vendorsare available for free. ASP.NET runs best on Microsoft servers (no surprise there), but can run on
Unix and its variations. JSP runs on both Windows and Unix servers with nearly equal ease.

Do it yourself or hire an expert?

By now you might have noticed that integrating a database with your HTML pages can be a little
complex As we mentioned at the beginning of the chapter, you'll need to acquire some expertise to
make databases play well with your HTML. So the question becomes, when should you hire an expert
to do your Web development for you? There is no straightforward answer, but in general, you should
consider hiring an expert if you don't know much about programming or databases and need to build a
mission-critical Web site.

It may seem less expensive in the short term to invest some time and master all the related
technologies yourself — but the inevitable beginner’s mistakes can prevent your site from working the
way you'd like it to, and may not keep it from crashing frequently. However, if you're looking to build a
standard application — such as an online store or other e-commerce endeavor — many hosting
providers provide access to applications they have already built for the purpose, and are running for a
monthly fee. That option means that maybe you can have your site up and running quickly, without
learning the details of the technologies yourself, and without having to pay up front for a developer (or
team of developers) to build it. Check it out.

The downside to this approach is that you have to live with the functionality that the application comes
with; you can't customize it. So, before you make your decision, carefully evaluate what the application
offers; be sure it meets your needs adequately. If it doesn’t, struggling to make do with the application
may make you wish you had built one from scratch to begin with.

If, of course, you're just putting together a small Web site for fun (or have some time to dig into new
technologies), then by all means take the time to acquire these skills for yourself. They will be useful
in the long run, and you can build an application that fits you to a tee. You might consider having a
professional help you with the design, but once you have a good design, you may have the time and
energy to finish the implementation yourself.

To learn more about ASP.NET, visit wwv. ni cr osoft.com net/.

To learnmore about JSP, visitht t p: / /j ava. sun. conml products/jsp/.

A connection between your Web server and the database

A Web server handles all requests for Web pages and other resources from outside users and from your
HTML pages themselves. If an HTML page asks for an image, the server serves it up. If an HTML page
asks for an audio file, the server serves it up. If an HTML page asks for data from a database, however,
the server needs some guidance. Serving images and media are part of what a Web server is designed to
do. Serving database connections is a whole other kettle of fish.

To help your Web server (and consequently your HTML) make a connection to the database and fetch
data from it, you must have an application that runs on the Web server that can process requests from the
PHP, ASP, JSP, or other custom tags you write into your Web pages. As we mention in the previous
section, PHP, ASP, and JSP processors interpret the custom tags you use to add commands to HTML.
For those processors to interact with the database, you need a database connection, usually an Open
Database Connection (ODBC).

Every database has small programs called driversthat act as connectors, working with the various Web-
application processors so the main processor can connect to the database. When you're choosing a Web-
application language, be sure it has a driver available for your database of choice. Chances are you'll find
what you need, but it doesn’t hurt to double-check.

http://java.sun.com/products/jsp/

Finding Database Support from Your ISP or IT Department

As you get ready to integrate a database into your HTML with PHP, ASP, JSP, or some other Web-
application language, take the time to find out whether your ISP (or department) actually supports the
database and language you plan to use. (Details, details . . .)

You need to have a processor and a database driver available on your Web server to add
database commands to your HTML — and to have those commands translated in the queries that go to
the database.

Although most ISPs let you put just about any collection of text, images, and other media files on your
Web site, many have strict rules about what applications and databases you can use. Databases require
maintenance, and applications suck up memory and processor speed. Chances are you won'’t have
accessto your Web server if an ISP manages your application and database; you'll need to rely on the
tech support staff of the ISP to do it. Make sure they can and will.

Many ISPs now offer MySQL and PHP support; some even offer JSP and other database support. If
you want to use a database in tandem with a Web- application language, check with the folks at your ISP
first to see whether they'll let you use the ones you have in mind. If your ISP doesn't have the support you
need, you may have to change ISPs.

If you're working on a Web server hosted by your company’s internal IT department, work with them to find
out what databases and languages they're willing to support. It won’t do you any good to choose a
JSP/MySQL solution if your entire IT department runs on Microsoft and wants you to use an ASP/SQL
server solution instead.

Find Out More

This chapter outlines the basic options and issues associated with connecting a database to your HTML
pages. The more ambitious your vision for an HTML-database pairing, the more you'll need to know about
what you’re getting yourself into before you, uh, get yourself into it. To find out more about databases and
Web applications, you can consult the following Web sites and books (all books published by Wiley
Publishing, Inc.):

m Builder.com’s resources on databases:
http://builder.comcom builder/sub area.jhtmn ?i d=w108

m Builder.com’s programming and scripting resources:
http://builder.cnet.com webbuil di ng/0-3882. ht m

m Webmonkey's ASP resources:
http://hotwi red. |l ycos. coml webnonkey/ progr anm ng/ asp/

m Webmonkey's PHP resources:
http://hotwired.|lycos. coml webnonkey/ progr anmi ng/ php/

m Webmonkey's Database resources:
http://hotwi red.|ycos. coml webnonkey/ backend/ dat abases/

m ASP.NET For Dummies by Bill Hatfield

m JavaServer Pages For Dummies by Mac Rinehart

m SQL For Dummies by Allen G. Taylor

m MySQL/PHP Database Applications, 2nd Edition, by Jay Greenspan and Brad Bulger

m FileMaker Pro 6 Bible by Steven A. Schwartz

m MySQL: Your Visual Blueprint for Creating Open Source Databases by Michael Moncur
m PHP Bible, 2nd Edition, by Tim Converse and Joyce Park

m MySQL Bible by Steve Suehring

m SQL Weekend Crash Course by Allen G. Taylor

m MySQL Weekend Crash Course by Jay Greenspan

m PHP and MySQL For Dummies by Janet Valade

http://builder.com.com/builder/sub_area.jhtml?id=w108
http://builder.cnet.com/webbuilding/0-3882.html
http://hotwired.lycos.com/webmonkey/programming/asp/
http://hotwired.lycos.com/webmonkey/programming/php/
http://hotwired.lycos.com/webmonkey/backend/databases/

Chapter 15: How HTML Relates to Other Markup
Languages

Overview
In This Chapter
m Tracing the descendants of HTML
m Telling XML apart from XHTML
m Contemplating a change to XHTML
m Getting XHTML automatically from the HTML Tidy utility

HTML is a great and wonderful thing — after all, it's the cornerstone of Web pages and has been
instrumental in making the Web a prime communications medium. However, HTML does have its
limitations (as you've no doubt begun to notice as you create and maintain your own Web pages).

At the heart of these limitations is the finite collection of elements and attributes included in the HTML
specification. Even though HTML has evolved over time, and additional elements and attributes have been
added, along with support for style sheets, no way can HT ML possibly provide every element or attribute
you'd like it to have.

HTML was designed to describe text-based documents built primarily of paragraphs, headings, lists, and
similar elements, and it does that very well. But there’s lots of other kinds of data, such as manufacturer ID
numbers, course titles, car parts, recipe ingredients and instructions, and financial data. The idea of using
text-based markup to describe that type of data (and a million other kinds) for the Web sure does make
sense, so it's not surprising that in the past several years, the need for something different, more extensive,
more flexible, and more robust became clear. Enter XML.

Defining Extensibility

The Extensible Markup Language (XML) is the descendent of the mother of all markup languages
(literally), Standard Generalized Markup Language (SGML). SGML is a metalanguage,a language for
creating other markup languages. XHTML is a child of XML that recasts HTML in XML format.

The HTML DTDs are written in SGML, which technically makes HTML an SGML vocabulary,
but because HTML is a defined vocabulary with a limited set of elements, it doesn't contain any of SGML's
extensibility features.

Here are the differences among HTML, XML, and XHTML, in a nutshell:

m HTML:Designed for describing a specific kind of data (text-based), HTML defines the appearance of
text and embedded objects, such asimages, ensuring a consistency in data description that browsers
can predict and work with. In plain-vanilla HTML markup, a heading is always a heading, and that
heading generally looks a certain way in most browsers. The problem is that HTML handles a finite
number of elements and attributes, yet there are infinite kinds of data people want to include on Web
pages.

m XML:The best way to think of XML is as a set of rules for defining data. What makes XML extensible
is the fact that, as long as you follow the rules, you can write markup to define data of any type for any
kind of output. (Display on the Web is one of a million kinds of output to choose from.) You're in the
driver's seat, defining elements and attributes as determined by the needs of your particular project,
and you can link your markup to just about any program imaginable.

m XHTML:A reworked version of HTML 4 in XML syntax, XHTML is HTML, The Next Generation. With
XHTML, you can use XML rules to define new elements and attributes for display. Theoretically,
XHTML is God's gift to the control freak: You can define any kind of data (you're only limited by your
imagination), and you can also control its visual display.

Web browsers know and love HTML, so as long as you create Web pages that use good ol’
HTML, browsers will know what to do with them. Because XML, and by extension XHTML, allow you to
create your own markup, there's no way a Web browser can be prepared to display your custom elements
without a little help. If you want to use XHTML to create your own markup, you'll need to use a style sheet
to give browsers the help they need to display your own kind of markup.

XML: Extending Your Markup

XML is a pared-down version of SGML with 10 percent of the complexity and 90 percent of its extensibility.
XML enables authors to create their own customized markup — and that means extensibility (which HTML,
with its predefined element set, can't offer). Whereas HTML took some inspiration from SGML (and maybe
even gobbled up some of its aspects), XML is a direct descendent of SGML — which means you can create
any set of markup you like with XML — the sky's the limit.

The end-all, be-all resource for information related to XML is the W3C’s XML pages, at
www. W3. or g/ XM.. Another great site is O’Reilly and Seybold’s XML.com at ww. xm . com This chapter
can scratch the surface of what XML is and why you should care — but these sites are chock-full of
information and resources to help you get up to speed quickly with XML.

Understanding how XML works

To get a good idea of what XML can do that HTML can't, think about the different items that might be
included in the description of a product in a catalog. For each product you might have a name, a short and
long description, a picture, a vendor, a price, and more. HT ML doesn'’t really have elements that help you
define a product's price any differently from the way you define its name. You can, however, use list items,
even paragraphs, to define a product in HTML, like this:

<h2>W dget 2345</ h2>
<p>Thi s wi dget makes your business run nore snoothly.</p>
<inmg src="w dget_2345_smal | .gif">

<l i >Pr oduct Nunber: 11098</I1i>
Price: $129.95</Ii >
<l i >Vendor: </ b> Wdgets International
<l i >Avai | abl e: </ b> Ships in 24 hours</Ili>
</ ol >

Although this HTML is enough to help post information about this widget on a Web page, it doesn't tell much
else about the widget. If you tried to send this information to a business partner and use it to share data about
your widget stock, the markup wouldn't tell him or her much about the data in the page. However, see how
XML can make a difference in how the markup describes information:

<product id="11098" avail abl e="24">
<name>W dget 2345</ nane>
<description>This w dget mekes your business run nore snoothly. </description>
<i mage type="thunbnail" src="w dget_ 2345 small.gif" />
<i mage type="large" src="w dget_ 2345 large.gif />
<price currency="US">129. 95</ price>
<vendor >W </ vendor >
</ product >

Notice how this XML tells you so much more about the product than the HTML did. That's the beauty of XML
— you create markup that perfectly describes your content.

Of course, a Web browser wouldn't be able to make much of this XML because browsers can’'t
possibly know how to display every element anyone might come up with. Which leads us to an important bit
of information about XML. XML's primary focus is to define content, not display.

When you work with XML, you're working to carefully describe your content, without any regard for how it's

displayed. In fact, display of content isn’t even XML’s most significant use. XML has become the de facto
method for describingcontent so computers can share it. Web sites and other computer systems pass XML-
described data back and forth around the Web because the XML tells those systems all they need to know to
work with the data after they've received it.

As you might expect, however, XML can be used with style sheets that help browsers and other clients
display your content. Display isn’t everything in today’'s world, but it’s still something you often have to attend
to.

The XML FAQ at wwv. ucc. i e/ xm / is a great place to get more information about what
XML is and what you can use it for.

Introducing DTDs

The beginnings of your XML endeavor must begin with the XML document. You have to carefully construct
the elements to follow the markup syntax rules outlined by the XML specification. Then, you have to create a
Document Type Definition (DTD) that defines how these elements interact.

All of the XML behavioral rules are created in a DTD. With HTML, the DTD was created for you, which
explains why you have a limited number of predefined elements to work with. With XML, however, you can
create your own DTD; therefore, you create your own element set and the rules that govern that element set.

This is where the extensibility comes in: You can create your own DTD — and therefore, your own
element set, which you can extend whenever you want.

We cannot get to the details of XML because that's a whole other book — no, really, it is! (Check out XML
For Dummies, 3rd Edition, written by Ed Tittel and Natanya Pitts and published by Wiley Publishing, Inc.)

Introducing XHTML

XHTML is really just HTML reworked to adhere to the rules of the XML specification — the syntax rules for
creating XML markup — and associated with the XHTML DTD (which is nothing more than a list of what
elements and attributes you'll find in XHTML).

TheX in XHTML means that not only can you work with the predetermined element set defined in the
XHTML DTD (the same elements found in HTML 4.0), but you can also add any other markup you want
into the fray — as long as the markup follows XML rules.

If XML is the markup of the future, and XHTML is HTML in XML syntax, then is there any good reason not
to start using XHTML immediately? Well, probably yes — just as good reasons exist for seriously
considering XHTML as your markup of choice for Web pages (those are coming up shortly). Although, if
you decide to switch, you'll find it's really not all that hard; however, jumping right into XHTML may not be
the best way to accomplish your purposes. It's worth pausing a minute to consider. . . .

Avoiding mutant markup

Although XHTML (and XML in general) enables you to extend the element set with your own markup,
always remember that some application somewhere (usually a Web browser when you talk about
HTML or XHTML) has to work with your markup. Most Web browsers don'’t know what to do with the
custom elements and attributes that you might throw into the middle of an XHTML document.
Browsers may read XHTML, but don’t expect them to read Joe’s Wildly Customized Mutant Markup
Language. Before you start creating your own markup for fun and profit, you should take some time to
get firmly grounded in the purpose and rules of XML so you understand exactly how to get results.

Deciding whether to switch to XHTML

XHTML 1.0 and the next version of HTML are one and the same, and there’s been a lot of discussion
among Web developers recently about the prudence of making an early switch from HTML to XHTML. In
the end, the decision is yours, but you'll be better served if you have some information to mull over while
you make your decisions.

Here's a sketch of why switching to XHTML may make good sense:
m XHTML is the future of Web page markup, so you might as well get used to it now.

m If you're using Web pages as part of a larger XML solution (such as an online catalog, financial-
services site, or content-management solution), you’ll want all your markup to adhere to the XML
specification. If it does, you can include other XML markup in your documents.

m XHTML leads to cleaner, better-structured Web pages than HTML does simply because the rules of
XML demand well-structured documents.

On the other hand, here are some reasons why you might want to hold off on switching to XHTML.:

m Older Web browsers have some problems with documents that adhere to XHTML syntax. For
example, in XHTML empty elements like the image element must have a slash (/) before the greater
than sign (>), and some old browsers (2.0 versions, mostly) have problems interpreting this markup.

= You don't really need to make the switch for your pages to work on the Web. If you have hundreds of
Web pages already written in functioning HTML, there’s no reason to retrofit them with XHTML if your
only goal is to present content on the Web.

A good recommendation (going forward, at least) is to get comfortable using HTML — and to keep in mind
that yet another level exists, beyond that known to ordinary HTML. When you've mastered HT ML, you can

begin experimenting with XHTML. The elements and attributes are the same, but the syntax of XHTML is a
bit more rigorous (and less forgiving of markup errors).

Tips for switching to XHTML

If you do decide to make the switch to XHTML, this section includes a few practical rules to follow, each
one basic to creating markup in XML.

All XML documents (and that means XHTML documents) must be well-formed — which
means they adhere to all the basic rules outlined here.

Rule 1: Always nest correctly

Overlapping your elements is illegal in XML (and, hence, verboten in XHTML); you must nest your tags
correctly. Repeat the following mantra over and over again: What you open first, you close last.

If you're shaking your head and saying, “Huh?” here’s an example to clear things up — in fact, an incorrect
one:

<p>What you open <enmpfirst</en», you nust close <enpl ast</p></enp

See that offender in bold? Please don’t do that. The following is correct:
<p>What you open <enmpfirst</en», you nust close <enpl ast</enp</p>

Take a close look at both examples to make sure you're clear.

Rule 2: Always include so-called “optional” ending tags

Although you may be sorely tempted to omit that ending </ p> tag, such a deed is a ho-no according to
the XML Commandments. This rule does not include empty elements (which are forbidden to have a
closing tag, as decreed in Rule 6).

The current rule goes something like this: If an element has a closing tag, whether optional or required in
HTML, you must include it in your XHTML markup.

This is incorrect:

list itemone
list itemtwo
</ ul >

This is correct:

list itemone</Ili>
list itemtwo</Ili>
</ ul >

Rule 3: Attribute values must always be quoted

This rule requires a little effort: Attribute values must always be quoted. You can use both single (‘) or
double (*) quotation marks. It doesn’t matter which ones you choose, as long as you include them. (And,
so you don’t confuse people who view your source code, be consistent and use one or the other.)

This is incorrect:
<col group span=40 w dt h=15>

</ col group>

This is correct:

<col group span="40" wi dt h="15">

</ ;:ol group>

Rule 4: All element and attribute names must be lowercase

Unlike HTML, XML and XHTML are case-sensitive. For this reason, you must always use lowercase when
naming elements and attributes. This rule doesn’t apply to attribute values — only attribute names and
element names.

This is incorrect:
<| NPUT TYPE=" CHECKBOX" NANME="PET" VALUE="CAT">

This is correct:
<i nput type="CHECKBOX" nane="PET" val ue="CAT">

Rule 5: Attribute name-value pairs cannot stand alone

In HTML, you find a couple of instances of attributes as standalone text strings, such as conpact or
checked. These standalone strings are not allowed in XML. You can work around this problem by setting
standalone attributes as equal to themselves. Silly? Sure, but it's an XHTML rule — and it works.

This is incorrect:
<i nput type="CHECKBOX" name="PET" val ue="CAT" checked>

This is correct:
<i nput type="CHECKBOX" nane="PET" val ue="CAT" checked="checked">

Rule 6: Empty elements must end their start tag with / >

The easiest way to comply with this rule isto include a / > at the end of all your empty elements. To
ensure that older browsers can understand this construct, include a space before the trailing / and >.

You also want to avoid simply adding an end tag (which is legal but not always understood by older
browsers).

This is incorrect:

This is correct:

Note the space after the filename and before the trailing / >.

Rule 7: You must include a DOCTYPE declaration

TheDOCTYPE declaration is what referencesthe DTD. This is not required by browsers, but because
you're following XML rulesin your XHTML markup, and because you want your page to validate against a
DTD, you can't leave it out. The declaration looks like this:
<I DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN'

"DTD/ xhtm 1-strict.dtd">

The DTD must appear before the root element — that is, the <ht m > tag — and must follow the previous
syntax. Here’s the declaration broken down:

m Declaration keyword:<! DOCTYPE

m Type of document:ht m

m |dentifier keyword:PUBLI C

m Public identifier:"-//WBC/ / DTD XHTML 1.0 Strict//EN'
m DTD filename:" DTD/ xht ml 1-strict.dtd">

The previous example is one of the three DTDs you may choose from; here are the two other options:

<! DOCTYPE htm PUBLIC "-//WBC//DTD XHTML 1.0 Transitional//EN
"DTD/ xhtml 1-transitional.dtd">

<! DOCTYPE htm PUBLIC "-//WC/ /DTD XHTM. 1.0 Franeset//EN'
"DTD/ xhtml 1-franmeset. dtd">

The only difference between these other DTDs is the public identifier and filename. To read more about
your DTD options, visit the XHT ML specification at wwv. w3. or g/ TR/ xht ml 1/ #nor nat i ve.

Rule 8: You must include an XHTML namespace

According to the specification, the root element — <ht m > — must include the XML namespace that uses
anxnl ns attribute. A namespace is a collection of names used in XML documents as element types and
attribute names. XHTML is using the XHTML collection of names and therefore needs a namespace,
which looks like this:

<htm xm ns="http://ww. w3. org/ 1999/ xhtm "></ htm >

Keeping markup clean with HTML Tidy

David Raggett, an early developer of HTML (and an active contributor to the development of XHTML),
wants to help you out.

We all make mistakes when creating and editing HTML. With this in mind, Raggett created a simple
tool to fix these mistakes automatically and tidy up sloppy editing into nicely laid-out markup. His tool is
called HTML Tidy — a free utility offered on the W3C Web site. Luckily for us, Raggett added some
XHTML features to HT ML Tidy; now this tool takes a look at your HTML page, cleans it up, and then
outputs itas XHTML. HTML Tidy can even help you identify where you need to pay further attention to
making your pages more accessible to people with disabilities.

To read more about Tidy, visit ww. W3. or g/ Peopl e/ Raggett/ti dy.

The program is not currently a Windows program, unless you download the entire HT ML kit for editing.
If you're familiar with DOS programs, feel free to download just HTML Tidy and get to work. If you're
like most of us who are spoiled by the Microsoft Windows interface, you may want to visit a Web front
end created by Peter Wiggin. Visit the URL listed here

(http://webrevi ew. com’ 1999/ 07/ 16/ feat ure/ xht m . cqi), enter your URL, and then see
your page magically convert before your very eyes.

http://webreview.com/1999/07/16/feature/xhtml.cgi

Part V: From Web Page to Web Site

In This Part:

Chapter 16: Creating an HT ML Toolbox
Chapter 17: Setting Up Your Online Presence

Chapter 18: Creating a Great User Interface

In this part. ..

Part V is where we change focus from individual HTML documents (or Web pages) to the collections of
interlinked, interrelated HTML documents known as Web sites. Here we inspect the contents of a typical
Web professional's HTML toolbox, and point out why you might find such tools useful. We also provide
some examples of how the toolbox functionsin the real world. Next, we tackle the practical topics involved
in creating a Web presence online - what it takes to host, maintain, and update a Web site of your very
own. Whether your Web site serves as a personal hobbyhorse, a greeting to the world, or a managed,
professional resource on the job, you'll find this information absolutely invaluable.

Chapter 16: Creating an HTML Toolbox

Overview
In This Chapter

m |dentifying what you need in your toolbox

Discovering your favorite HTML editor

Authoring systems for the Web

Adding a graphics application to your toolbox

Understanding essential utilities for Web publishing

HTML documents are made up of plain old text. To create one all you really need is a simple text editor,
such as Notepad - and in the beginning that was all a Web author had available to use. However, as the
Web evolved, so did the tools used to create Web pages. Now there's so much more to Web authoring

that it's difficult to just use a simple text editor unless you don't care about graphics and HTML validation.

As time passes and you become more comfortable with HTML, you'll build an HT ML toolbox. This chapter
is dedicated to helping you build that toolbox. From HTML authoring applicationsto FTP programs, this
chapter arms you with what you need to know to make educated decisions about the tools you need.

In addition to an HT ML editor, you need an FTP tool to upload filesto a Web server, and specific software
tools for validation and maintenance so you can check your pages twice and keep them shipshape. This
chapter reviews and recommends the latest HTML authoring tools - as well as other tools you'll find in any
professional Webmaster's well-stocked toolbox. Some of these tools may already be on your system -
quietly waiting to help you create stupendous Web pages.

What You Need

The first step to building your toolbox is identifying the essential components. Although an HTML editor
may make your Web pages easier to create, it's not necessarily the only tool you need to publish and
maintain your Web site. You need an entire tool collection - a Webmaster's toolbox.

This chapter goes into detail about the types of tools you need, and we even go a little further by
recommending our favorites. Here's the short version:

HTML editor: Keep in mind that two different kinds of HTML editors exist: helpers and WYSIWYG
editors, which we describe in the following section.

Graphics applications: If you plan to use graphics in your Web pages, you need an application to
create and edit them.

Validators:Validation is the process of comparing a document to a set of document rules, in this
context a DTD. Typically, a document author creates an HTML document, submits it for validation,
and uses the report to identify errors, correct those errors, and resubmit the document for validation.

There are some occasions when breaking HTML rules is the only way to get your page
to render in older Web browsers. Although many browsers will render erroneous HTML, there are
reasons for document rules, and be warned that poorly defined HTML might produce unpredictable
results.

Link checkers: The Web is based on the concept of linking; therefore, a broken link on your site can
be quite embarrassing. Use a link checker before you publish your site (and routinely for
maintenance) to verify that your users never get the dreaded 404 Obj ect Not Found error
message.

FTP utilities: After your Web pages are created, validated, and checked in all applicable browsers,
you're ready to upload them to your Web server. Until your pages are uploaded to a Web server, only
you can see them.

To find out more about ISPs that provide Web hosting, see Chapter 17.

Using Text Editors in the Real World

Text editors come in two flavors: helper and WYSIWYG. The helper puts you in the driver’s seat; it has
fewer capabilities, but it does the job. The WYSIWYG editor does everything but your laundry. In reality, if
you get serious about creating Web pages, you really won’t make a choice between the two flavors. You
can have your cake and eat it, too. Here’s some more information:

m The helper editor: An HTML helper does exactly what it sounds like: It helps you create HTML; it
doesn’t do all the work for you. Usually, a helper application displays “raw” HTML —tags and all
(shocking though this may seem) — and such tools often color tags to help you differentiate them
from your content. Helpers usually include an HTML-aware spell checker that knows your tags aren't
just misspelled words, and helpers also incorporate other functionality to make HT ML development
easier and more fun. In our opinion, no Webmaster’s toolbox is complete without a good HT ML
helper.

m The WYSIWYG editor: AWYSIWYG editor creates HT ML for you, shielding your delicate eyes from
naked markup along the way. These tools look much like word processors or page-layout programs;
they're designed to do quite a bit of the work for you.

WYSIWYG editors can make your work easier and save hours of endless
coding — after all, you do have a life, right? — but we recommend that you limit your use of a
WYSIWYG editor to the initial design stage. For example, you can use one to create a complex table
inunder a minute, and use a helper to refine and tweak your HTML markup directly.

Finding an HTML Editor

Although this book explains how to create and maintain HTML pages with nothing more complicated than
a pocketknife and a ball of string, we don't think you should snub all HT ML editors.

As mentioned in the previous section, you have helper editors, and WYSIWYG editors can be divided into
two categories. Personally, we think that editors are just tools, and not substitutes for knowledge. Don't be
fooled by editors with a lot of bells and whistles. Here are a few tips on how to locate and choose a good
editor.

At the very least, an HTML editor needs to
m Be easyto understand and use.

m Comply with HTML 4.

Upgrade as HTML changes.

Support image map creation.

Check local links for accuracy.

Support HTML validation and spell checking.

Enable you to see and tweak your HTML code directly.
An exceptional HTML editor also

m Provides site map information.

Provides pixel-level control over object and text placement.

Supports style-sheet creation.

Supports Extensible Markup Language (XML).

Accommodates Common Gateway Interface (CGl) scripts, Java applets, and scripting.

Often the best, most popular, and least expensive HT ML editor for a particular platform is neither a
helper nor a WYSIWYG editor - it may be a combination of the two. Keep an eye out as you review the
selections for each platform in this category; editors and combination editor/helpers may be listed.

Not all WYSIWYG editors can serve as good learning tools. Be warned: If you're using a
product such as FrontPage that doesn't create the cleanest code, don't emulate its example. Messy
markup is a bad habit that leads only to confusion, frustration, and (pardon the expression) awful
language.

Dreamweaver

In our opinion, Dreamweaver is the best WYSIWYG Web development tool for both Macintosh and PC
systems - and most job postings support this assertion. As an all-in-one product, supporting Web site
creation, maintenance, and content management, Dreamweaver is an impressive product used by most
Web developers. Dreamweaver has continued to evolve since Macromedia first introduced the product in
1997. Since then, Macromedia has been committed to continued development of this product. The most
recent version of the product is called Dreamweaver MX.

Where to go for more information

Although the different tools listed here are of high quality and have a place in many Web- masters'
toolboxes, your opinions and experience may differ - no, as hard as we try, we can't read your mind

(yet). If you find yourself still looking for bliss, many Web sites offer more information on the latest
Web-page-development tools. For example, try TUCOWS - The Ultimate Collection of Winsock
Software - at ww. t ucows. com The developers of the TUCOWS site review all the tools they list,
and if atool isn't up to snuff, it doesn't get listed,; it's as simple as that. TUCOWS has been around for
a long time - in Web years - and it's never led us astray.

The one-two punch of using a WYSIWYG editor with a helper editor

After you start an HT ML document, you can open it in both Dreamweaver and HomeSite (or BBEdit),
and the changes you make to your page in one program are automatically registered in the other. This
two-in-one combination is a direct reflection of what the pros have figured out: You don't need just one
kind of HTML editor - you need both. Finally, Dreamweaver and HomeSite (or BBEdit) create solid
HTML that plays by the official HTML 4 rules so you don't have to worry about the quality of your
HTML. If you create code by hand, Dreamweaver warns you that you made a mistake and corrects it
for you if you choose.

Dreamweaver MX marks a turning point because it belongs to a suite of products, Macromedia's Studio
MX, that work together to provide a full spectrum of Internet solutions. Studio MX includes Fireworks MX,
Dreamweaver MX, Flash MX, ColdFusion MX, and Freehand 10.

Although Dreamweaver is a WYSIWYG tool, it comes with a helper editor. If you're a PC user, you get
HomeSite, a feature-rich helper editor that we discuss in detail later in the chapter. For Macintosh users,
Dreamweaver uses the well-known and well-respected BBEdit as its helper HTML editor.

We like Dreamweaver for a handful of reasons, one of which is that it has an easy-to-follow-and-learn
dialog box that allows authors to style Web pages using Cascading Style Sheets (CSS) without knowing
what a style rule is! Many of the benefits of Dreamweaver stem from its sleek user interface and respect
for clean HTML.

Creating an HTML document with Dreamweaver:
1. Select FileiNew.

The New Document dialog box appears (as in Figure 16-1).

Grenetdl | Templaies |
Categuny Buric Prage: Brgpay
Rase Page & HiM
[rvranie: Page @ HIML Tenplsts
Tesplate Page o ldvary [tam
Cther W e
55 Styls Sheets & JevaSorpe
Frafme-ald o <M P
Paga Desigre
P Desiore: [Bocsssbbs)
Diedrgten
HTHL document
[Wsice Diocumesnd 304 TML Comgphent
Moo | Peimeeces | ot Mors Corbert Cancel

Figure 16-1: The New Document dialog box.

2. Select Basic Page from the Category list and HTML from the Basic Page list and click
Create.

A basic HTML document appears, ready for changes.
3. Add elements using Dreamweaver's panels or drop-down menus.

For example, you can add a title by entering text in the Title text box in the Document toolbar (see
Figure 16-2).

) Ml v D g e gus A

[Be Ede Yiew |sars Qofly Do Commamss She Wadew Hslp
Lorrn | L e il | Furtes | Porss | Aetmitel Lidaeted | Pl el et Samass| |)

LE| L e 5= 20

Gl Al | e mE CmiLE

: B e e E s E|EAE
| ?..':::: ta 21 i=les elam I tne

)

Figure 16-2: Adding a title to your HTML document.

With all this functionality, rest assured Dreamweaver doesn't come cheap. Dreamweaver is priced in the
$300 range, but that price includes a Home Site license, quality documentation, tutorials, and an all-around
tool that you can use for many aspects of Web development. Also, Macromedia is loyal to its customers.
After you buy a copy of Dreamweaver, upgrades are available at lower cost. In addition, you have all the
power of an established multimedia company behind the product. What more can you ask for?

To find out more about Dreamweaver, visit the Macromedia Web site at
www. nacr onedi a. conl sof t war e/ dr eamneaver .

FrontPage

FrontPage 2002 is the newest version of the Microsoft commercial Web-authoring system for Windows
95/98/2000/XP and Windows NT/2000 or later. Since Microsoft bought FrontPage from Vermeer
Technologies Inc. in January 1996, FrontPage has become a premier personal Web-authoring,
publishing, and maintenance tool for Windows users. As we predicted, this product has become the most
widely used tool of its kind on the Internet.

FrontPage organizes each Web site in its own project folder so you can develop and manage multiple
sites. Enhanced drag-and-drop features let you drag Microsoft Office files into the FrontPage Explorer or
move hyperlinks, tables, and images within the FrontPage Editor. The Verify All Links feature automatically
verifies that all hyperlinks are valid - within and outside your Web site. This feature even corrects all link
errors within your site for you.

FrontPage 2002 also supports database connectivity, ActiveX controls, Java applets, VBScript and
JavaScript creation and insertion, tables, frames, and HTML 4.0, plus the Microsoft version of Dynamic
HTML. Breathe!

As if all this wasn't enough, the FrontPage Bonus Pack includes an application for creating and editing

graphics for your Web documents. The Bonus Pack includes more than 500 tools and effects, and works
with PhotoShop-compatible plug-in products, such as Kai's Power Tools from MetaT ools, Inc. Image
Composer includes more than 600 royalty-free Web-ready images. You may also download the free
Microsoft GIF Animator to animate your own Image Composer images and make your Web site really
jump on the screen.

The FrontPage interface also enables you to use any document created with Microsoft Office 97 or 2000
because it works like other Office applications. FrontPage uses the shared spell checker, global Find and
Replace, and the Microsoft thesaurus.

Now, you can't quite say 'FrontPage, create my Web site' into your PC's microphone, walk off, have an
espresso, and come back to view the finished work. But, if you apply the knowledge of planning and
preparation from earlier chapters in this book, you should be able to have a decent Web site created,
tested, and running on your ISP's Web server in little time by using FrontPage.

There are a few disadvantages to using FrontPage, however. To begin with, the HTML markup leftin the
wake of a FrontPage experience can leave even the sawiest of Web gurus scratching their heads. If
you're a developer who likes to tweak a few points by hand using your favorite text editor before your Web
page goes live, you might be disappointed with FrontPage. However, if you don't mind messy HTML, you'll
be fine using FrontPage!

Another notable disadvantage also deals with its output. FrontPage, being a Microsoft product, can be
viewed using any version of Internet Explorer; however, it's not as friendly to non-Microsoft browsers. If you
choose to use FrontPage, be sure to check your work in multiple browsers before uploading your
documents.

FrontPage is not quite as pricey as Dreamweaver, but you can expect to pay just under $200 for a single
user license. With that price, comes all the goodies and functionality you would expect of a Microsoft
product. Just be warned that you will want to validate your pages before you upload them for all the world
to see.

For more information about FrontPage 2002 and to take an interactive tour of the interface, check out the
Microsoft Web site at wwv. i cr osoft. com front page.

HomeSite

HomesSite 5 is the newest version of this software and the first non-WYSIWYG editor for us to look at. It
has quickly become the text editor of choice for Windows users. This editor does not have full WYSIWYG
capabilities and it does require HTML knowledge. However, it provides assistance at every step. If you
recall, this is the editor used for the Windows version of Dreamweaver. So, if you have Dreamweaver, you
also have HomesSite.

We like the easy-to-use interface, shown in Figure 16-3. Even with a simple interface, HomeSite is an
extremely feature-rich HTML editor for the beginner and professional. Some of our favorite HomeSite
features show why:

m You can instantly get a browser view by clicking a tab.
m The HTML is color-coded to help you with your editing.
m You can drag-and-drop and access context menus with a simple right-click of the mouse.

m You have access to an integrated spell checker, as well as global search and replace tools that check
your spelling and update entire projects, folders, and files simultaneously.

m You can use the image and thumbnail viewers to browse image libraries directly in your editor.

= You can customize the toolbars and menus to suit your individual needs.

B - DeALUATION VT RSI08 . Jleiled

Be [Searh [oss Erajen Opisns Tags Yiew Belp

A3 RL AN TR -0 F £ B g | vty | e | A | e | e | i |
PR SO Y T as TJﬂnb.Lﬂ_.'q..-]
o -l
I w PETTIL CFL F T ¥ NIEL & TERESF | L1EHA
=t e i
s T 1 LSEE L
L1 B
» -
L]
o] L=
g :
o
i
el | 2E=]
[t[A[STRTE] &Pl 4

LB L] Hma

Figure 16-3: HomesSite's interface displaying a blank HTML document.

As afurther bonus, HomeSite offers extensive online help with accessing documentation on HTML and
other popular scripting languages. The result is one impressive system. But there's even more. HomeSite
helps you with your project management, provides for link verification, internally validates your HTML, and
opens and uploads your files to your remote Web server.

As a standalone product, you can purchase HomeSite for about $100. But remember, if you have
Dreamweaver, you already have HomeSite. If you're a Windows user, we highly recommend this editor.

To learn more about HomeSite, visit the Macromedia Web site at
www. nacr onedi a. cont sof t war e/ honesi t e.

BBEdit

BBEdit is for the Mac (PC users don't have to listen!), and like HomeSite, it's a favorite of Web developers.
The only difference is that these Web developers use a Macintosh computer. There are two versions of
BBEdit to choose from: BBEdit and BBEdit Lite. As its name suggests, BBEdit Lite is a limited version of
the BBEdit package that comes in the Macintosh version of the Dreamweaver MX suite, which we rave
about earlier in this chapter. From the folks at Bare Bones Software, BBEdit Lite is a Macintosh text editor
that comes complete with a set of HT ML extensions to make Web page development easier.

These HTML extensions for BBEdit Lite are quite extensive and provide a well-rounded HTML-authoring
system. Tools of this kind can (for example) use an editor to open a standard text file and automatically
save the file with HTML elements. The two sets of extensions for BBEdit Lite - BBEdit HTML Extensions by
Charles Bellver and BBEdit HTML Tools by Lindsay Davies - come with the editor so you don't have to do
any extra installation along the way.

Although BBEdit Lite doesn't include all the functionality that its big brother BBEdit does, you find that using
BBEdit Lite gives you access to most, if not all, HTML authoring functions you're ever likely to need - even
for the most complex Web pages. BBEdit Lite also addicts you to the BBEdit way of life, and we predict
that soon you'll be using the full-blown version of BBEdit. It's all a conspiracy, didn't you know? Seriously
though, to download a copy of BBEdit Lite, simply point your Web browser at wwv. bar ebones. com

If you opt for the full version of BBEdit, you won't be disappointed. Although you aren't hidden from the
markup - remember, BBEdit is not a WYSIWYG editor - BBEdit still makes it easy for you. BBEdit is
another one of those all-in-one programs that enables you to create, validate, and upload a Web page
using just a few clicks. Creating an HTML document is easy. By selecting FileiINewiHTML document,
you're already on your way.

When you've created a document shell, you can start adding elements by hand, or you can use BBEdit's

Markup drop-down menu to add HTML elements such as lists, tables, and forms. If you're a Mac user,
dare we say this application is a must!

Both BBEdit and BBEdit Lite can be found at wwv. bar ebones. com Remember, if you have
Dreamweaver for the Mac, you already have BBEdit.

Word processors and HTML

If you're joined at the hip to Microsoft Word or Corel WordPerfect, you can try their built-in HT ML-
editing and site-management features. These features provide adequate HTML assistance but aren't
really in the same ballpark with better standalone WYSIWYG Web development and HTML editing
systems. If you already own one of these word-processing programs, however, their Web functionality
is free. For now, you may want to use your favorite one for text and for Web development. For
example, Word 97/2000/XP for Windows has a WYSIWYG editing window with a good number of
functions inits toolbar. This program is adequate for a word processor turned Web document editor.
However, who knows what Microsoft will do in the long-term with both Word 97/2000 and FrontPage
contending for the role of Web document development systems.

Why worry about that now? If you own one, try it out for Web development. Just keep in mind that if
you create HTML in a word processor, the HTML you get will not be 100-percent standard - resulting
in an erratic, clumsy Web page at best. If you have long documents that have been developed in a
particular word processor that need to be converted to HTML, doing a first-stage conversion in the
processor itself may be easier, but you will have to do any final clean-up and tweaking in a full-fledged
HTML editor, and most likely you will have to tackle it by hand as well. Dreamweaver supports the
importing of Word documents; however, even using Dreamweaver's cleanup tools, you will have to
edit the document by hand before it's ready for the Web.

See the following sites for further information on Microsoft Word 97/2000 for Windows, and Corel
WordPerfect 8.0 for Windows, respectively:

www. i crosoft. confoffice
www. corel . coml O fice2000/i ndex. ht m

GoLive

Recently, Adobe has been giving Macromedia a run for its money in the Web development department,
and GolLive is a part of that game. GoLive doesn't have the popularity among seasoned developers;
however, it's gaining popularity.

If you're thinking about delving into the world of WYSIWYG editors, give some consideration to GoLive 6.
Although we prefer BBEdit or HomeSite, this is a reputable WYSIWYG editor. So here's the skinny on
Golive.

Golive, like Dreamweaver, attempts to do it all. It not only creates dazzling pages, but it can also handle
multiple display options (for example, handheld devices), site management, maintenance, and even
multimedia. One of the features we like about GoLive is its easy site-creation wizard. Using Adobe's
trademark floating windows, the site organization is always accessible as the main floater. You can use the
Golive Site wizard to define basic characteristics about HTML documents (whether a single document or
a collection), and then create a blueprint for your site structure.

This functionality is similar to the storyboard used to design a Web site. The idea is to get a feel for how

the site goes together and spot potential weaknesses in the design - on paper - before you have to wrestle
with markup. This functionality serves a similar function, so you can get a good working sense of what you
need before you start building the pages. (It makes sense; an architect wouldn't start on a house without a

blueprint, right?)

You can purchase GoLive 6 for just under $400 for new users and just under $100 for an upgrade. It
features full support for Mac OS X, as well as Windows XP, 2000, and 98.

To read more about GoLive and see the interface in action, visit the Adobe Web site at
www. adobe. cont product s/ golive/overview htm .

Graphics Tools

Graphics applications are beasts. They can do marvelous things, but learning how to use them can be a
bit overwhelming at first. We wish that we had the space to provide detailed instructions for each product,
but that would take an entire book for each product. However, we would like to introduce you to three
favorite tools.

We recommend that you also create text-only versions of your site to allow for complete accessibility.
To read more about accessibility concerns, see Chapter 18.

You might want to outsource your graphics work because graphics applications can be
pricey and complicated; however, it's always good to have a graphics program that you can use to tweak
images if need be.

Photoshop

Photoshop is a cross-platform Adobe product that can do just about anything you can think of. It's not
cheap; with a price tag reaching $600, you hope it could rebuild the earth if it had to. Well, it comes close
toit. Photoshop has something for everyone. It can create simple Web graphics, complex slicing for
images pulled together by tables, digital photography, and any other traditional graphic work that it was
first designed for. Of course, that doesn't even begin to cover just what Photoshop can do.

First things first, Photoshop is for the pros. However, if you plan to get involved in serious Web graphics, it
just might be worth the price tag because it's the best-respected graphics application on the market.
Employers expect their graphic artists to know Photoshop from top to bottom, and if you think you might be
heading in that direction, you may want to give it a whirl.

Because of the hefty price tag, we recommend downloading a 30-day trial version before you make
an actual purchase. It couldn't hurt and will make you an educated consumer. If you're ready to join the big
leagues, check out the Photoshop All-in-One Desk Reference For Dummies, by Barbara Obermeier, with
David Busch, and published by Wiley Publishing, Inc. This desk reference is packed with information on
just about every Photoshop tool known to man.

To learn more about Photoshop, visit the Adobe Web site at ww. adobe. com

PaintShop Pro

We like PaintShop Pro because (at right around $100) it's a less expensive, PC-based alternative to
Photoshop that provides similar features. (There's no version for Mac users.) If you're just learning HTML,
and want to add some graphics, PaintShop Pro is a more reasonable approach. You can do almost
anything with PaintShop Pro that would be needed for beginning or intermediate-level graphics editing. We
highly recommend this product for Web authors who want to add images to their sites but have no desire
to make graphic art their full-time living (or their fulltime hobby).

To learn more about PaintShop Pro, visit ww. | asc. com

Fireworks

Fireworks is a fairly young graphics program from Macromedia. It was designed specifically for Web
graphics, and should only be used to create and edit images for the Web. (Photoshop and PaintShop Pro
handle every kind of image you can think of, but aren't dedicated, as Fireworks is, to Web graphics.)

Because it's used only for the Web, its interface is less daunting and easier to use. Fireworks is designed
to work hand in hand with Dreamweaver - and it does just that. With the new suite of products that make
up Macromedia's Studio MX, Fireworks is one of the many products that work seamlessly together to
develop complex Web sites with dazzling images. This is a mid-range product, great for smaller graphic
projects destined for the Web.

To learn more about this product, visit ww. macr onedi a. com

Link Checkers

If you think spelling errors are embarrassing, here's something that's even worse: broken hyperlinks.
Hyperlinks make the Web what it is; if you have broken links on your site, that's borderline blasphemous.
Seriously, if your text promises a link to a great resource or page but produces the dreaded 404 Obj ect
Not Found error when users click it, you'll end up with disappointed visitors - who may never surf to your
Web address again.

The worst broken link is one that points to a resource in your own pages. You can't be held
responsible for what others do to their sites, but you are 100-percent accountable for your own site. Don't
let broken links happen to you!

As with the other checks, many HTML editors include built-in local link checkers, and some editors even
scour the Web for you to check external links. In addition, the majority of Web servers also offer this
feature.

Checking external links isn't as simple as it sounds because a program must work over an
active Internet connection to query each link. This checking can be processor intensive, and you should
check external links only during off-peak hours, such as early morning, to avoid tying up other Web
servers as well.

A number of scripts and utilities are available on the Web to help you test your links. Two personal
favorites are the W3C Link Checker and MOMSpider.

W3C Link Checker

First created to check validity of W3C technical reports, the W3C Link Checker utility was written by
Renaud Bruyeron and then reworked by Hugo Haas. The same W3C Link Checker utility is available
online, for download, or (if you're a savvy programmer), as source code that you can tweak to suit.

The way the Link Checker utility works is it reads the HTML document and grabs all links - this includes
named anchors. It first verifies that anchors are not duplicated, and then verifies that all links are pointing
to an actual reference. Like all validators, the utility produces areport that warns against HT TP redirects
and any duplicated anchors.

To use the online validator, visitht t p: // val i dat or . w3. or g/ checkl i nk, and then enter the URL of
the document you want to check (see Figure 16-4). This does mean that you can only check documents
already on the Web. To check documents before they go live, you'll have to use a standalone product.
However, many WY SIWYG products provide this functionality already, so check your product before
downloading a standalone.

http://validator.w3.org/checklink

[A= [m Fawoalars Tl I
W3
W3CP® Link Checker

Erimi o swncvee (LS of & ciowurie s il yoii wecail 3§ s 1o ok

=]

il IIH: o B

Figure 16-4: Using the W3C Link Checker we can verify that all links found at www.lanw.com/staff are
not broken.

MOMSpider

MOMSpider was one of the first link checkers available to Web developers. This link checker is written in
the Perl programming language and runs on virtually any Unix machine. MOMSpider needn't even reside
on the same computer as the site it checks - so even if you don't serve your Web site from a Unix
machine, you can still check links from MOMSpider on a remote system.

Anyone who has some knowledge of Perl can easily configure MOMSpider to create custom output and to
check both internal and external links on a site. Don't fret: If you don't know Perl, you can easily find a
programmer who can adjust a MOMSpider in his or her sleep for a nominal fee. Many ISPs run a
MOMSpider on your site for a low monthly fee and cheerfully handle the configuration and implementation

for you.

To find out more about MOMSpider, visit the official site at
http://ftp.ics.uci.edu/ pub/websoft/MIVspi der/ .

http://ftp.ics.uci.edu/pub/websoft/MOMspider/

HTML Validators

The majority of browsers are forgiving of markup errors. Most don't even require an <ht m > element to
identify an HTML page, and instead simply search for recognizable HTML elements to identify a document
as readable. Just because the real world is that way, doesn't make inconsistency a good thing. You may
see a day when browsers can't afford to be so forgiving, and that day is drawing closer as HTML,
Extensible Hypertext Markup Language (XHTML), and other extensible markup languages become more
complicated and precise. Get the markup right from the beginning and save yourself a bunch of trouble
later on. HTML validation is built into many HTML editors.

Introducing the W3C's standalone validator

Although not many standalone HTML-validation applications exist, the W3C has put together a free, Web-
based validation system available athtt p: //val i dat or. w3. org.

The W3C validation tool enables you to choose which HTML or XHTML DTD (version) you want to use
when you check your document - and you get a variety of different outputs to match your preference. You
can choose a terse output that lists only the line numbers in your document, the boo-boos, and a brief
description of each - or a verbose output that goes into great detail about why each and every error is an
error and even includes links to the relevant information in the HTML specification.

Using the W3C's online validator

Even if you have a validation application in your current text editor, we strongly recommend that you never,
ever - What, never? No, never! - post a page on the Web without running it through this validator first. If
your HTML is correct, your pages will look better on a variety of Web browsers. Your users will also be
happier (even if they don't know exactly why).

When you use the online validator, if you're on a network that has a firewall, it may prevent you
from uploading your HTML files. This is because the firewall considers online validation applications to be
a risk to your computer's security. Although there's certainly nothing wrong with online tools (especially the
one supplied by the W3C), there's not much you can do to work around the problem. You have no choice
but to use a local tool that you download, such as HTML Kit (also offered by the W3C) or a validator
bundled with your text editor, such as HomeSite or BBEdit.

If you're ready to use the W3C's online validator, here's how to get started:
1. Verify that you included the correct DOCTYPE declaration.

To use the W3C validator, you must include a DOCTYPE declaration, or select one from a drop-
down menu. If you don't, the validator doesn't know which DTD your document conforms to, and
therefore, doesn't know which set of rules to check. So first things first: Be sure to add a DOCTYPE
declaration, such as the HTML 4.0 transitional declaration:
<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTML 4.01 Transitional//EN'
"http://ww. w3.org/ TR htnnl 4/ cose. dtd" >

If you're validating a frameset document, you must use the frameset DOCTYPE
declaration:

<! DOCTYPE HTML PUBLIC "-//WBC// DTD HTML 4.0 Franeset//EN"
"http://ww. w3. org/ TR REC- ht ml 40/ franeset . dtd" >

2. Visithttp://validator.w3.org.

3. Enter the URL of your pagein the URI Address text box (as in Figure 16-5).

http://validator.w3.org
http://validator.w3.org

Recent Updates

Traroe & chia MoGt recent major charges o the cerviog, 500 "What's Bles" for morn

o L S ap 13, SO0
+ JMproved ond essandsd Lharacter E-ood ng support (i
Validate by URI
Aklress:
Charactor Encoding! || deec sums =
Deociiment TS | S aur =
Clptioars: M Shios SOoarce r w Caria T
™ SFuas Sl - exrhata & riiEuie
wmlritn T80 (g
=]
] o B

Figure 16-5: The W3C Validator Web page is simple and easy to use.

Choose from these other options as needed:

m Character Encoding: For beginners, we recommend leaving the default setting (detect
automatically). If you're not a beginner, choose the appropriate character encoding for your
document.

= Document Type: Beginners should probably leave the default setting (detect automatically) in
place. If you know the version of HTML (or other markup language) you used when you wrote
your document, pick it from the list.

m Options: You can select the format and type of information defined by the report. You don't
have to select any of the options; the default produces error and warning messages with line
numbers that tell you where the error is in the original HTML document.

Press Enter or click the Validate this page button.

You either receive a Web page that states No Errors Found or you receive a Web page listing
any warnings or errors. If errors are found, you may have to take some time to get used to
deciphering the murkier error messages. Figure 16-6 shows a sample.

WL FI ML Validatian Sorvics Heaufa Mirrsasd bniermet bapioess
His et Wirs Sgewites Jerk [isip [= |
2l
Baloyw 5 Tisting bo parog i d v i an S0V parnol
1 - rnr
i
E ol teg T F e, possitle Cause fea J al
T r raskirag renls or usa of = men whera | |
w LF Fapal !
L L Fape Cnlnee
Ermox- stort bag b
o (g b g { e [EE 4 L Tr&ngit|
e e i i LIet] sy i
d -1
Source Lisling .
ol Daas o lraninal

Figure 16-6: Error message that found a missing closing </ ti t | e> tag.

6. Fixthe errors and validate your document. Keep doing this until it returnsaNo Errors
Found message.

This process may not be tons of fun, but after one page full of errors, you'll be a real stickler about
validating the next HTML document.

Just because your page returns the greatly anticipated No Errors Found message
doesn't mean you're done. Be sure to check all your Web pages in any browser that your users might use.
Netscape and Internet Explorer are known to render pages differently (no big deal in the newest versions,
but you can't be sure that all your users update their software every few months).

FTP Clients

After you've created all your pages and you're ready for the world to take notice, you might find yourself
scratching your head and wondering what the heck to do next. This is acommon phenomenon known as
Web fright. Many first-time Web authors get to this point and then stare blankly at their screens.

Thereis only one cure for Web fright. It's all about the File Transfer Protocol (FTP). FTP is a protocol you
can use to transfer a file from one machine to another. With FTP, it doesn’'t matter what platform a
machine is running, all will understand, provided each machine has FTP software installed.

Okay, maybe there are two cures. Not only do you need a means for transferring your Web page online,
but you also need a destination for your Web page. A Web server is used to house the collections of
pages for the Web site. You may have your own Web server machine. If you don’t know whether you have
a Web server, then you don’t have one. Don’t go run out and buy one, either!

A Web server runs special software that's dedicated to presenting and maintaining Web files (among
several other Web-related tasks). If you don’'t have one of these supercomputers, your local ISP (such as
EarthLink or MSN) can host your pages for a fee.

After you've selected the host, and know how to access the Web server (your host will provide you with this
information), you upload your pages to the host’s server using FTP — for which (yep) you need an FTP
program. All such programs are similar, and easy to operate. Two of our personal favorites are WS_FTP
Pro for Windows, and Fetch for the Macintosh:

m WS _FTP Pro can be located at ww. i pswi t ch. com

m Fetchcanbelocatedathttp://fetchsoftworks. com

The basic interface for an FTP program consists of dual windows (shown in Figure 16-7). One window
provides access to your own hard drive; after you log on to the Web server, the other window provides
accessto that server. Two arrows usually show up between these two windows: one pointing left and one
pointing right. To upload a file from your hard drive to the Web server, you highlight the file in one window
and select the appropriate arrow. Using FTP, you can upload or download files to and from the Web
server.

b View e losle el
bina s o BIDICE 5
e

[T T
[po]

[%]
M e — 8]
Figure 16-7: The basic WS_FTP Pro interface.

For more information on Web servers, Web hosting, and transferring your files, see Chapter 17.

http://fetchsoftworks.com

Chapter 17: Setting Up Your Online Presence

Overview
In This Chapter

m Locating a place to host your Web pages

Acquiring a domain name

Moving files to your Web server

Maintaining your site

Promoting your site

You've built a great Web page, or two, or even a whole Web site, and it’s time to get it on the Web for the
whole world to see. The actual act of moving your files from one place to another is pretty easy (as you
find out a bit later in this chapter), but you have some decisions to make about where to keep those files
and if you need your own Web site domain. Also, you should formulate a plan for maintaining your site and
promoting it. In this chapter, you find out how to do all these things so you can establish an online
presence fit for the excellent HT ML you’ve created.

Hosting Your HTML

The first and most important step in putting your pages online is finding someplace on the Web to put
them on display - a host. In general, you have two choices for hosting your pages:

m Host them yourself.
m Pay someone else to host them.

The word host is used throughout the Web industry to mean a Web server set up to hold Web pages
(and related files) so they can be accessed by the rest of the world. In this chapter, we use host as a noun
and as a verb - when you host a Web page, you're running Web-server software on a computer.

As you might expect, setting up and maintaining a Web server has pros and cons, whether you're hosting
your own pages or paying someone else a fee to host them for you. The next few sections of this chapter
look at both approaches to hosting - and give you the skinny on what's involved with each. You can decide
which option works best for you.

Just because you choose one hosting option over the other now doesn't mean you're stuck
with it for life. If you find hosting your own pages a little overwhelming, after a while, you can easily move
your files to a service provider, or vice versa. When you think about which hosting option is best for you,
concentrate on your needs for the next six months to a year; plan to reevaluate your decision in a few
months.

Hosting Your Pages Yourself

In this section, we talk about hosting an average-size site (1 to 100 pages or so) that doesn't include more
than a couple of multimedia files, and doesn't have any special security or electronic commerce (e-
commerce) applications.

If you need to run a large corporate site, an online store, or any other complex site, you'll
need more expertise, equipment, and software than what's listed in this section. Books such as E-
Commerce For Dummies and Webmastering For Dummies, 2nd Edition (both from Wiley Publishing, Inc.)
can help you get started working with more complex sites. We also recommend that you talk with a Web
professional who has practical experience in setting up and maintaining complex Web sites.

You can set up your own Web server and host your Web pages yourself. To do this, you'll need:

m Acomputer designated as your Web server: Web servers are often dedicatedto a single task,
leaving word-processing and other activities to a different computer.

m Web-server software: Common Web-server software packages include Apache and Microsoft's
Internet Information Server (lIS), called Internet Information Services in Windows 2000 and later.

In this chapter, as in the rest of the Web world, you may see the term Web server used
torefer to a dedicated computer (that is, the actual hardware) as well as to refer to Web-server
software. That's because you can't have one without the other.

m Adedicated Internet connection: Your Web server isn't very useful or reliable if it's only connected
to the Internet when you fire up a dialup connection.

Introducing Web servers

You might be surprised to find out that the first two items in this list (Web server and Web-server software)
are the easiest to come by. Computers are cheap these days, and a Web server doesn't have to be all that
beefy to work efficiently. After all, it's dedicated to performing a single set of functions: accepting and
responding to requests for Web pages, and of course holding your Web files.

Unless you're serving multimedia files that can take up gigabytes of space, you'll find that all the files
associated with any average Web site only total a few megabytes at best. In fact, an average home
desktop computer purchased in the last two or three years will make an acceptable Web server.

There is no shortage of Web-server software for you to choose from, and several very good, free Web
servers give you access to programs you can download and install in a matter of minutes. Both Windows
and the Apple OS come with Web servers built into them that are designed for personal use - that is, fairly
small potatoes Web sites.

If you want something meatier because you're hosting even a medium-size Web site, we recommend
that you choose one of the free Web-server software downloads, such as Apache. These applications are
designed to handle more server activity than personal Web-server software is.

TUCOWS at ww. t ucows. comis an excellent source for freeware and shareware Web-
server software downloads. In addition to links to software downloads, you'll find reviews of different Web-
server software so you can gather information and find the right program to meet your needs.

Getting a dedicated Internet connection

The most expensive piece of the host-it-yourself approach is a dedicated Internet connection. Each page
on your Web site has a unique Uniform Resource Locator (URL) that is an exact and specific Web
address, so your Web server needs to have an Internet connection that never goes down and whose
Internet address never changes.

The fact that your connection must be dedicated,or constant, puts dialup phone connections and even
standard Internet access cable and Digital Subscriber Line (DSL) connections out of the running because
their Internet addresses change regularly. Also, most ISPs prohibit you from hosting a Web site on your
standard dialup, cable, or DSL connection.

Here's a list of considerations regarding your dedicated connection:

m |t's gonna cost you: To get a dedicated Internet connection, you'll need to arrange for one from an
ISP and pay a special fee (at least $50 a month if not more) to have that dedicated line. If you already
have an ISP, you can find out what the ISP offers, as well as how much it charges.

m Fasteris better: Your dedicated connection needs to have a decent speed. Of course, you can host a
Web site over a dialup phone connection, but what would be the point? Your pages would trickle out
from your site to your users' browsers so slowly most users simply wouldn't stick around or come back
for a second time.

At a minimum, you need a dedicated cable or DSL line, and even with those, you shouldn't try to host
multimedia files simply because they are so large.

If you already have a cable or DSL line, you're not in the clear. Your computer's IP
address (its unique address on the Web) changes regularly because your ISP has a bank of
addresses it uses for all connected subscribers. Because your address changes regularly, it's
dynamic. Your Web server's IP address must be static, which means it never changes. This
consistency allows other computers to find the server on the Web and request Web pages from it.
Your ISP has more flexibility with dynamic addresses, so they cost less than static addresses.

If you're getting the idea that hosting a Web site yourself is a little complicated and expensive, you're right.
Not only do you have to pay for the equipment and dedicated Internet connection, but you also have to
learn how to set up and administer a Web server and keep all the pieces working 24/7. This is all well and
good if you have the time, knowledge, and resources to devote to managing a Web server, but if you don't,
consider the more practical option we discuss in the following section, 'Using a Hosting Provider.'

Using a Hosting Provider

A hosting provider manages all the technical aspects of Web hosting, from hardware to software to
Internet connections. All you have to do is manage your HTML pages. Back when the Web was young,
hosting provider options were scarce, and what wasavailable was expensive. The times have changed,
and needs have grown, so reasonably priced hosting providers are abundant these days.

If you decide to let someone else host your pages, you have two choices for how much you pay:

m Nothing:Some services actually host your pages for free. That's it; you pay zip, zero, nada to get
your pages on the Web. What's the catch? You have to pay in other ways, usually with advertising
attached to your page.

m Something: Most Web-hosting services, however, charge you afee, from a few dollars a month to
triple digits a month. The trick to making the most of your hosting funds is to find just the right hosting
service to meet your Web site needs.

Web hosting for free

The old saying There's no such thing as a free lunch is particularly true in Web-land. A handful of hosting
providers offer to house your Web pages for free, but they have to make their money somehow -
generally, from advertisements they attach to your Web site.

You don't usually have any control over which ads are attached to your site, and it may look to your visitors
like you're promoting a particular product when you really aren't.

So why use a free hosting service if you have to deal with the ads the service attaches? If you're just
putting a page up for fun, you're early in the learning process and want to practice with a page or two
online, or are willing to live with the ads if it means you don't have to spend money, then free Web hosting
may be right for you.

Free Web hosting, however, is not right for any business Web site - small or large - simply
because all those ads don't look professional. Visitors to your site will know you're taking the cheap route,
and may make some inferences (usually incorrect) about your business.

Also most free Web-hosting services won't let you attach a domain name to your site (covered a little later
in the chapter). If you plan on procuring your own domain, or you already have one, free hostingisn't the
right option for you.

If you want to investigate your free Web-hosting options, start with these providers:

www. netfirns. coml

http://geocities.yahoo. conf hone

s ww. freeservers. coniflash/index flash. htm

m http://angelfire.lycos.com

For a longer list of free hosting providers, search for 'free Web hosting' in your favorite search engine.

Web hosting for a fee

If you want complete control over your Web site, you may want to pay a service provider a fee to host your
pages. The service provider handles all the infrastructure pieces - such as storage space, software,
Internet connections, backups, and such - and you simply manage your files.

When you pay someone to host your Web pages, you want to get all the services you need for your site
without paying too much. In addition to hosting your Web pages, most providers offer additional services,

http://geocities.yahoo.com/home
http://angelfire.lycos.com/

including (but not limited to):

m E-mail accounts

Mailing lists

Common Gateway Interface (CGI) and other server-side scripting support (so you can add guest
books and other neat widgets to your site - see Chapters 10 and 12 for more information)

Database support
m E-commerce support

Any good provider will also host your pages under your domain name if you have one or want one, and
most will even help you purchase a domain and get it up and running.

Finding the right provider

Before you start looking for a hosting provider, think carefully about what you'd like to include in your Web
site (other than plain HTML pages). Some things you might want to include are

= E-mail capabilities
m A shopping-cart function
m Page counters, search engines, HTML forms, or other interactivity capabilities

After you have a good idea of what services you need, you can start shopping for hosting providers. Each
hosting provider's costs will be different, but it shouldn't cost you more than $10 to $20 per month for a
basic Web site that includes a megabyte or two of data storage, one or two e-mail addresses, domain-
name hosting, and support for scripts and programs. When you think about it, that's all you really need to
get a solid site up and running.

If you plan to include more advanced features on your site (such as a shopping cart or a database), you
can expect to pay $30 or $40 a month. Even that's not a huge expense for an online store.

When you look for a provider that has a variety of packages available, be sure it's easy to upgrade
from one hosting package to the next as your site's needs grow.

The best answer to the question of who you'll choose to host your site may be right under your nose. If
you're happy with your current ISP, why not check to see if it offers Web-hosting services. You may find out
that your ISP services has a Web-hosting option already included with it, which means you won't have to
fork over extra money (over and above what you're already paying) for an Internet connection. If your
connectivity plan doesn't include hosting, you may be able to add it for a small fee, instead of starting all
over again with a new provider.

If you haven't chosen a hosting provider yet, you might find out if potential providers have a Web interface
you can use to manage your Web site. Is there a demo of the interface available? Does it look easy to
use? Although the availability of such an interface shouldn't be your only criteria for a good hosting
provider, it might sway you in favor of one provider over another.

The Web Hosting Ratings site (ww. webhost i ngrati ngs. com') isa good place to start
if your own ISP doesn't pan out as a good hosting provider for your needs. This site includes a search
engine you can use to search for hosting plans, and a reviews section where you can read what others
have to say about potential hosting providers.

Getting Your Own Domain

As detailed in Chapter 1, a domain name is the high-level address for any given Web site. Some examples
of domain names are mi cr osoft. comappl e. comw3c. or g, and dummi es. com

You may want your own domain name (hence domain) that reflects your business name (or even your
personality). If you don't get a domain name of your own, your pages will be part of someone else’s
domain name — usually your hosting provider’s domain name. For example, a personal Web site hosted
without a domain name ati 0. comhas a top-level URL of

http://ww. io.com ~nat anya

With a domain name of nat anya. com the same Web site would be hosted at

http://ww. nat anya. com

One is, of course, easier to remember than the other, but is that a good enough reason to have your own
domain? Maybe — but then again, maybe not.

Deciding whether you need a domain name

Domain names are cool to have, but they aren’t free. To get a domain name, you have to register it and
pay to use it (more about the exact process in the following section, “Getting a domain name”), and some
hosting providers charge you extra to attach your domain name to your Web site. So how do you know
whether you need a domain name?

Although there’s no simple answer to this question, it's safe to say that a business should invest in a
domain name because a Web site is part of a business image. A business that has a uniqgue domain just
looks more professional than one that doesn’t. Imagine if Microsoft’'s domain name was
http://wwv.io.com ~ni crosoft? How seriously would you take them?

However, for a personal site or even for a small consulting site, a domain name is really optional. You
don't need one to run your site, so it's really up to you if you choose to spend the money. Many individuals
have their own sites, as do many families, and you can decide if it's a worthwhile expenditure for you.

One benefit of having your own domain name is that you can change hosting
providers without affecting the domain for your Web site. When you pay for a domain name, it's yours; you
can move it from one hosting provider to another at will. Without the domain name, you can’t change
hosting providers without changing your site’s URL.

Getting a domain name
If you decide that you want to get a domain name, you have to do two things:

m Find a domain name that you like that isn’t taken. To find out whether a domain name is taken,
visit VeriSign at ww. net sol . com(the keeper of domain names in the United States) and search for

the name.

Domain names can be harder to come by than you might imagine, especially ones that include
common words in their names (for example, ww. conput er . comor ww. car . com). You might
need to get creative as you look for a domain name. The VeriSign search engine helps you out a bit
by suggesting some alternatives to your original choice.

http://www.io.com/~natanya
http://www.natanya.com
http://www.io.com/~microsoft

m Register that domain name. After you find a domain name that you like, you have to register it as
belonging to you. Most domain names are registered for two years, and after those two years are up,
you can re-register the name. In effect, after you've registered a domain name, it’s yours to keep for
as long as you're willing to pay for it.

You can register and pay for your domain right on the VeriSign site, but before you do so, check with your
site’s hosting provider to see whether a better registration deal is available. For example, VeriSign usually
charges $70 for a two-year registration, whereas the hosting provider World Wide Mart

(wwww. wor | dwi denmar t . con) only charges you $17 a year for the same service (saving you $36).

If you don’t have a hosting provider already set up, you have to pay VeriSign for the domain
name so you don’t run the risk of losing the domain. The cost difference between what VeriSign charges
and any deal you'll get with your hosting provider isn’t so significant that you may want to lose a domain
name over it.

If you're thinking you can register a domain name long before you have a Web site to hook it to, you're
correct. In fact, many people have domain names registered that they never put Web sites up for. Some
people have great plans for Web sites that never come to fruition, whereas others register domains just to
keep competitors from registering them. When you register a domain, VeriSign simply keeps the site in
your name until you're ready to use it.

Linking your domain to your Web site

Attaching your domain name to your Web site after you have a hosting provider (or have your own Web
server up and running, for that matter) is pretty easy. If you've registered your domain through your hosting
provider, you don't actually have to do anything; the hosting provider takes care of everything for you —
except the actual care and feeding of your individual pages.

If you have a domain that VeriSign is holding for you, you simply log in to VeriSign with the account you set
up when you purchased the domain name, and provide the new nameserver information you received
from your hosting provider.

Nameservers are computers on the Internet that translate domain names into the actual Internet location
for your computer. Your Web-hosting provider's nameservers know that your domain name matches a
specific site listed on their Web servers. That means you need to let VeriSign know the names of those
nameservers at your hosting provider. It's really that simple.

Any good hosting provider can give you detailed instructions on how to register a domain nhame in the
provider's system or attach your domain name to your Web site on its computers. If you're changing from
one hosting provider to another, your new provider should help you transfer your domain. Most providers
give you this information up front or have online help that will walk you through it. If it’s not immediately
clear how to get your domain set up, be sure to ask for help. If you don’t get it, change providers.

Transferring Files to Your Web Site

After you've secured a Web site host, or decided to put up your own Web server, you'll need a way to
move the HT ML pages you created on your local computer to the Web server. Thisisn't a one-time activity
either. As you maintain your Web site, you'll need to move files you've built on your local computer to the
Web server to refresh your site.

The way you move files to your Web server depends entirely on how your Web server is set up. Normally
you have a couple of transfer options:

m The File Transfer Protocol (FTP)

m A Web interface for moving and managing files provided by your hosting provider

ViaFTP

Of these two options, FTP is almost, without exception, always a possibility. FTP is the standard for
transferring files on the Internet, and any hosting provider should give you FTP access to your Web server.
When you set up your Web site with your hosting provider, the provider usually gives you written
documentation (either in print or on the Web) that tells you exactly how to transfer files to your Web server.
Included in that information is an FTP URL that usually takes the form ft p: //ft p. domai n. com

You can use an FTP client suchas WS_FTP (ww. i pswi tch. coml Product s/ W5 FTP/) or CuteFTP
(wwv. gl obal scape. cont product s/ cut eft p/i ndex. asp) toopen a connection to this URL. Your
provider will give you a username and password to use to access your Web-server directory on the FTP
site. Then you can move files to your Web site using the client's interface. It's really that easy. If you want
to grab a copy of a file from your Web site and modify it, you simply download a copy, make your
modification, and re-upload it - all through the FTP client's interface.

Each FTP client's interface is different, but they're all pretty straightforward. Chapter 16 includes
more information on finding a good FTP client, so when you find one, spend a few minutes reading its
documentation.

You may not need a separate FTP client to move your files to your Web server. Most newer Web browsers
(such as Internet Explorer 5.5 and higher and Netscape 6 and higher) have limited FTP capabilities built in.
You can easily upload and download files, but you may not be able to make or delete directories. Also,
many Web utilities (such as Dreamweaver) have file-management capabilities. Find out more in Chapter
16.

Viayour hosting provider's Web site

In the interest of usability and reducing technical support calls, many Web hosting providers have built
Web pages that help you upload and manage your Web site files without using a separate FTP utility or
even the FTP tools inside HTML editors. The majority of these tools enable you to manage your site, such
as uploading and downloading files, creating and deleting directories, moving files around, and deleting
files. If you already have a hosting provider, find out if it has a set of Web-based tools for managing your
site.

Every provider's interface is different, so be sure to read the provider's documentation before you start to
transfer your files. Also remember that most providers who have these Web interfaces won't stop you from
managing your site via FTP as well. If you find the interface too cumbersome, or you like the way FTP
works better, by all means use i.

Maintaining and Updating Your Site

In many ways, putting a Web site up is only half the battle. Maintaining your site after it's up is as important
as getting it up in the first place. Think about your own Web surfing experiences for amoment. How happy
are you to come across a site that is obviously outdated and full of stale information? Don’t you expect the
Web to have the most up-to-date information available? After all, updating a page is as easy as copying a
file to your Web server. It's not like you're publishing a book.

How often you update your site information depends entirely on the kind of site you're running and the
information you include in it. A news site needs updating every few minutes (as news breaks), but a
consulting site might only need updating every few weeks or even every few months (as projects are
completed and résumés change).

You may also find that some portions of your site need updating more frequently than others. Thinking
back to the news site, the world and national news sections might update many times a day, but living or
health sections may need attention every one or two days.

As you begin to move from building phase to maintenance phase for your site, start to think about
how frequently each piece of your site will need to be updated or changed. You'll then get an idea of what
kind of maintenance schedule and process you're looking at.

Creating a site that is easy to maintain

The best way to help make your maintenance process easier is to build a site that is easy to maintain in
the first place. You can put a variety of measures in place to make this happen:

m Organize your HTML files, images, and multimediainto folders on your site. Put all your images
in one folder, your multimedia in another, and then divide your pages into folders that reflect the
different sections in your site. When you organize your pages and collateral well, you can quickly find
files when you update or change them.

m Use templates for site navigation and other chunks of commonly used data on your site. You
can save these templates as snippets of HTML in a text file somewhere, and when you create a new
page, you can just drop the text into that template. If you use the same HTML for certain elements of
your site (for example, a copyright statement) and you make a change to that element (change the
copyright date, for example), you can do a search and replace on all the files on your site to make the
change quickly.

m Keep an updated visual map of your site in electronic or print form. You can go so far as to use
Visio or some other charting tool, or simply sketch the map on a piece of paper. If you have a map you
can turn to when you make a change, you can easily see the relationships between the different
pages on your site and quickly create links and references on the relevant pages.

Some HTML software, such as Dreamweaver, has mapping features built into the interface and
can generate site maps for you at the click of a button.

m Create a mini-style guide that lists the basic design elements you use in all your pages. Include
the background, text, and linking colors you always use, the fonts for each kind of content (headings,
body, lists, and so on), graphics you use in particular places, and any other design-related information
so it's always at your fingertips.

Getting (and staying) organized

One of the keys to making site maintenance as hassle-free as possible is to get — and stay — organized.
The sad truth is that you need to get a handle on your files and information so you always know where

everything is. Or you could stay sloppy and disorganized. The choice is yours, but we guarantee that your
updates will be more painful if you organize your files the way you organize your junk drawer. Regardless

of your organizational style, the following tips can help you get and stay organized as you prepare to
maintain your site:

m Keep everything in one place: Put all of your Web site files and collateral, both electronic and
otherwise, in one place so you can always find the information related to your site. Set aside a folder
on your computer’s hard drive to store all things Web related and then further subdivide the folder into
working directories, images, the actual HTML files that drive your current site, and so on.

m Decide on a maintenance schedule: Analyze the data on your site and make a plan for how often
each piece of your site needs to be updated. You might consider making a chart and actually
scheduling tasks in your calendar so you're sure you have time set aside to update your site.

m Keep atickler file: Create an electronic or paper folder to hold pending Web site information, so you
can quickly lay your hands on the data necessary for updating your site when the time comes. As you
go about your daily work and find something that you know needs to go into the site, simply throw a
copy of it into your Web site folder. For example, if you put press releases on your site once a month,
but issue them several times a month, toss an electronic copy of new press releases into a “Web
pending” folder as they are released. That way you know right away which ones to add to your site
when the time comes.

= Maintain a separate to-do list: Keep a running list of things to do to your site, with a deadline for
each one. As you get closer to a scheduled site maintenance day, you can look at your list and have a
good idea of how much work you'll need to do to make the update and how long it will take you.

m Get othersinvolved — and keep them on task: If you rely on others to provide you with information
for your Web site, work with them in the early stages of the site to set up a process for scheduling
updates and communicating information. Find easy and efficient ways for those people to deliver
information to you, and set expectations for how long it will take for you to update the site. Keep in
mind that the process you set up will evolve over time, but you've got to start somewhere.

m Do a post mortem: After your site has been up for six months or so, step back and evaluate your
organization and update schedule to see how well it's working for you. You’ll have some experience
with the site and its information, and you may find a different or better way to organize your data or
schedule your updates. Periodic checks like this can help you adjust to your site’s needs and adjust
your site to your needs.

Running regular checks

In addition to updating your site regularly with new and changed information, it's a good idea to check two
key elements of information on your site at least once a month:

m Links

m Content not scheduled for an update

Looking for broken links

The links you make to the pages within your site shouldn’'t break unless you move or delete a page from
your site. The links you make to other people’s sites, on the other hand, are beyond your control and can
change or break any time. If there’s one thing users hate to find on a site it's a broken link, so take the time
at least once a month to scan your site for broken links and either remove or fix them.

You have a variety of options for running link checks. Many higher-end Web development tools include link
checkersthat walk your site and report any broken links. Check out Chapter 16 for more information, or
visit TUCOWS (wwv. t ucows. com) to download freeware and shareware versions of standalone link
checkers. You can also use the W3C’s online link checker (htt p: //val i dat or. w3. or g/ checkl i nk)

for a free, Web-based link check.

http://validator.w3.org/checklink

Checking content

Checking content isn't as straightforward as link checking because you won't find software that will troll
your Web site and tell you if your content is stale or otherwise broken. Instead, it's up to you to make a
monthly quick pass over all the content that didn’t show up on your radar when you did updates to other
parts of the site. You're basically just checking to make sure that the content’s still good. For example, if
your site includes bios of key staff, information about them might change over time, but you won’t
necessarily update individual bios when you add new ones or remove old ones. A regular check of all bios
(regardless of staff additions or attrition) will help you be sure all of the information is up to date.

If this task seems daunting, consider dividing your site into sections, filtering out the content you know you’ll
update regularly, and scheduling each section for a quick review every week. If you use this approach, you
never have to review your entire site at once (which can make you tired and cause you to miss errors
anyway), and maintenance becomes a manageable activity that you attend to for a few minutes once a
week. It's good to get into the habit of regularly reviewing your site anyway, and this is a good way to form
that habit.

Obviously, if your site is large or you have several different content contributors, the weekly content
checks can get out of hand. However, if people contribute content to your site, they should also contribute
time to keeping that content relevant and fresh. Work with your content contributors to set up a regular
schedule for reviewing content that isn’'t slated for a regular update. You can expect them to find things
that need to change, but such is the reality of running a Web site.

Expanding Your Site

The day may come when you want to expand your Web site. Maybe you've added a new department to
your business, you want to post some of your favorite resources on your consulting site, or there’s been a
new addition to your family. Whatever the reason, you should carefully plan the expansion before you
actually do the work. A little work up front can save you from many headaches once you get started.

The first thing to do is decide on the scope of your expansion. Typically, you'll find that expansion work that
you need to do to your site falls into one of these three categories:

m Adding a new page or two: As you might imagine, adding a new page or two to your site is the
easiest work you’ll do because you can model the new page or pages on pages that already exist on
your site.

When you add a new page, just be sure that it fits into the general flow of your site, and don't forget to
link to it from another page on your site — especially the home page and the site map, if you have
one. You might also put a note on your site’s home page to let visitors know about the new information
on the site. This helps those who are familiar with your site find the new pages, and shows everyone
that you're keeping your site fresh.

m Adding a new set of pages (or section): When you add a new section to your site, things get a little
more complicated because your site’s navigation system can be greatly (and negatively) impacted by
the change. If you want every page of the site to refer to the new section, you'll need to change the
navigation for the entire site after the new section is complete.

Before you begin the addition, be sure to think through very carefully how the map of your site
will change and make a list of all the pages on your site that will need an updated reference to the
new section. If you have a checklist laid out before you begin the update, your chances of missing any
pages decrease considerably.

m Completely reconfiguring the site: We’re going to level with you right off the bat: When you
redesign your entire Web site (as everyone does at least once during the lifetime of a site), it's like
starting all over again from scratch. Of course, you do have existing information, images, and even
some HTML to work with. You also know more about how your site needs to function and whether you
need to improve your methods since first creating the site. Even so, take the time to make a plan for
redesign that includes:

o Arevised site map that lists all the sections and pages you plan to include in your new site.

o Alist of the information you can reuse, and which pages you plan to reuse it on.

o

A list of new information that you need and where you plan to get it.

o

A design plan that outlines the general look and feel for each of your pages.
o A checklist of everything to do to get the site up and running.

Whether you add a section or substantially change the navigation of the site, it's
a good idea to run a link checker on your site to find any stray links that you forgot to update during the
expansion. You'll be much happier if you find and fix broken links than if a visitor finds the problem and
reports it to you.

Along the same lines, if you drastically change the organization of your site, links from other sites (like
the all-important search engines) to yours may no longer work. For a while, you might keep your old
pages in place and include referrer links (discussed in Chapter 5) that help visitors to your old pages
find the new pages.

This list may seem a little involved, but if your site has more than ten pages or so, building Web pages
without a plan is going off half-cocked. Such folly results in a disconnected mishmash of pages

instead of a cohesive Web site.

Getting Your Site Noticed

After you have your site up and running and have a maintenance plan in place, you need to make sure
that the rest of the world knows about it. After all, what good is a site if no one visits it? If you build it they
will come is a nice idea, but don't expect it to apply on the Web.

A search engine is a crawler, which is simply a piece of software that wanders the Web collecting
information about pages. Each engine works differently and collects different information about a given
Web page, but in general, each gathers the URL, the page title (from the <t i t | e> element), and often
the entire text from the page. If you give the engine your top-level URL, the engine crawls from that URL to
every page on the site that you link to, and every page those pages link to, and on and on until your entire
site is in the engine's database of URLSs.

When someone searches for keywords in a page, the engine compares his or her search request with the
information in all the pages in the database, and lists the most relevant links first in the results. This means
the best way you can help people find you is to make sure the guts of your page are included in text
(minus the graphics because the engines can't read the text in graphics) and that the information on your
page is as clear and concise as possible.

Step back and think about what terms you would use to search for your page, and be sure those
words are on your home page. For example, if you sell widgets at a discount, be sure to include the words
widgets and discount in the text of your home page.

Registering with search engines

The first thing you can do to help get your site noticed is to register with search engines. Although some
online services say they will do this for you, you're better off spending a little time doing it yourself for free.
Just provide the search engine with the top-level URL for your site, and the engine will do the rest. There's
no need to pay to register all 100 pages of your site.

The easiest way to register with a search engine is to visit that search engine and look for its register’ or
‘add URL' link. Each engine has a form you can fill out to submit your URL to the engine.

Before you start registering, take some time to write up a short description of your site. Some engines ask
for this information, and it's better to provide a prepared (and spell-checked) description that you've
thought through completely than it is to add one that you created off the top of your head.

Not all search engines use the keywords stored in a page's metadata as part of the search, but some
do, which means it never hurts to include keyword <net a> elements in your document headers. Read

more about metadata in Chapter 4.

Crafting useful page titles

Have you ever noticed that the first thing you see about a page in a search engine's results listing is its
title? The title of your page often makes the first impression, so you want it to be a good one. When you
craft titles for your pages, be sure that they remain meaningful and intriguing when viewed outside the
context of your Web site.

For example, the title 'My Home Page' is not a very helpful title because it doesn't say who you are and
why potential visitors should care. However, the title 'John Doe, MCSE and Network Guru for Hire' tells
people alot more about you and may generate more visits to your page.

You want the titles of your pages to be descriptive but concise, which can be tricky, but you get the hang of
it after a while. Consider including the same basic information at the start of each title, followed by a short
descriptor of the page. The résumé page on a consulting site might be titted 'John Doe, Networking Guru -
Résumé and Curriculum Vita' while the recent projects page might be 'John Doe, Networking Guru -
Recent Projects.’

Promoting your site offline

As important as it is for you to register and promote your site online, you should be sure to promote it
offline as well. Print the URL on your business cards and other marketing materials. Include it on your
correspondence and in your e-mail signature (okay, so that's technically online) and any other place that
you think people will see it. Just think of your Web site as an extension of your identity (corporate or

otherwise) and promote it as such.

Chapter 18: Creating a Great User Interface

Overview
In This Chapter
m Understanding why your Ul matters
m Using site maps during site development and on your site
m Practicing good linking
m Choosing media well
m Creating an accessible site
m Reviewing some excellent user interfaces

The overall design of your site is called the user interface (or Ul) - and when you design a good Ul, you
give users the tools they need to move about your site with minimum fuss. This chapter outlines some
standard Web-site design principles to follow as you create your HTML; they can ensure a usable and
effective Ul.

As its name implies, a Ul is the mechanism provided to give a user access to the information on your Web
site. Although each Ul is unique, they're all made up of the same components: text, graphics, and media
files, all held together with HTML. If your site is difficult to navigate, cluttered with flashing text and rampant
colors - and generally doesn't help people find what they're looking for - then your visitors probably won't
find their way to your site more than once. Why should they bother?

However, if your site's navigation is intuitive, you use images and media to accent your design without
overpowering it, and you do all you can to help people locate the information they're looking for, you've
created a solid Ul and can expect visitors to return time and again.

Defining the Scope and Goals for Your Site

An important first step in creating an effective Ul for your site doesn't have anything to do with markup, but
instead has everything to do with planning.

Before your site grows too large (or before you even build your site if you haven't started yet), carefully
identify the exact purpose of your site and the goals you want it to meet. When you have a good
understanding of your site's scope and goals, you can better create an interface that accomplishes them.
For example, an online store might have goals like these:

Allow visitors to browse an online catalog and put items in a shopping cart.
Provide visitors with a way to purchase the items in their cart online.

Help users make smart purchasing decisions.

Facilitate merchandise returns and exchanges.

Solicit feedback from users about products they want to see in the catalog or ways to make the site
better.

This short list of goals is also an indicator of the areas your site may include - and the kinds of activities it
will need to support. Instead of having just a single area (such as a product catalog), the site needs some
specialized areas like these:

Online catalog and shopping cart
Buying guides or other information that can help users make better purchasing decisions
A help-and-feedback section

A set of tools to expedite returns and exchanges

When you've established the goals for your site, you can identify the elements best suited for the site:

A navigation system that identifies the major areas of the site helps users quickly identify what part
they're in, and helps them move from one part of the site to others without getting lost.

A set of standard design elements (such as buttons, page-title styles, and color specifications) to keep
the users oriented as they move from page to page in the same site.

A standard display for items in the catalog, including product-related information such as product
images and descriptions, prices, and availability.

Well-designed forms to help users search for products in the catalog, purchase the items in their
shopping carts, request arefund or help returning anitem, and submit comments to the site.

Long text pages that offer extensive information on purchasing options, product returns, and other
helpful information - but are still easy to read and navigate.

Design matters

You'll notice that this chapter doesn't lay down the law about exactly what makes a Web page pretty or
ugly. We include discussions of good design principles, but it's up to you to choose color schemes and
the overall look-and-feel for the site. Always remember that what looks great to one person may be
ugly to someone else. That said; keep in mind that design does matter when you're building your Web
site.

If you're building a site for your business, that site may provide the first impression for potential
customers or clients. The site should reflect your business style. If you run an architecture firm, for

example, strong lines and a clean look may be the best way to present your company image. If you
run a flower shop, your site may be a bit more organic and decorated (well, okay, flowery) to remind
visitors of what they might expect if they walked into your store.

If you're new to Web design or graphics and you need a site that marks your business presence on the
Web, consider getting help from a Web-design professional to create a general look-and-feel for the
site, and then use the images, layouts, and navigational aids they create to build and manage the site
yourself. Once established, a distinctive and consistent look-and-feel of your site is relatively easy to
maintain.

Regardless of who designs your site, be sure you take the time to get a critique of it from peers,
friends, family members, and anyone else who is willing to be brutally honest with you about how good
(or even bad) it really looks. A negative-but-constructive critique from someone who knows and
respects you beats a 'Gee, that's ugly' from someone whose business you are trying to acquire.

Thefinal section of this chapter, 'Some Excellent User Interfaces,' takes a look at how
Amazon.com's Ul matches the online store's goals.

Bottom line: The final Ul elements you include in your site - and how you design and organize them -
should all flow from the site's goals. Even when you add to an existing site, you should start by considering
the goals of the new section of the site, and then identifying the Ul elements you need to meet those goals.
Of course, by that time you'll have an existing Ul to use as a guide, so the Ul for the new section should
facilitate the original goals of the section and fit your site's overall design.

Mapping Your Site

It's often easier to get to where you're going if you know how to get there. Mapping your Web site can be a
vital step in planning — and later running — the site. This process involves two creative phases:

m Creating a visual guide on paper or electronically that you can use to guide the development of your
site.

m Creating a visual guide on your Web site to help visitors find their way around.

Both have their place in good Ul design, so each gets its own section.

Using amap for site development

When you use a site map during the development of a Web site — even one that includes a few pages —
you know what pages you need to build and how they relate to each other. The map can help you identify
the navigation elements you’ll need to include — and as a bonus, it provides you with a checklist of pages.
These are two ways a site map can help ensure that you've built everything your site needs before you put
it on the Web for the world to see.

For example, the visual map of the XML Dummies, 3rd Edition Web site
(ww. I anw. cont books/ xni f d3e/ def aul t . ht n) isshown in Figure 18-1.

This map tells us that the site has four main sections, and three of those sections — chapter contents,
chapter URLs, and chapter examples — are each further divided by chapter. Each chapter page then lists
the contents, URLS, or examples for a particular chapter in the book.

Home
I e I/\
Chapler {'l wapler Chapler ﬁ;,}rﬂ act
Corntents Llii'ts Exampk:fs Irfi

— ;}Ti‘_ - S

_//‘\\\-\

Ch. || €h || Ch / {:|1 th
Page || Page || Page | / Page

/
/

Ch Ch Ch
Page || Page | | Page
Figure 18-1: The site map for the XML For Dummies, 3rd Edition Web site.

Building the site one piece at a time

If you plan to build your Web site a page or section at a time, you can create a map of the final site and
then decide which pages it makes the most sense to build first. When you have a good working idea of
how your site is going to expand, you can plan for it during each stage. For example, suppose you have
created a site map for the XML For Dummies, 3rd Edition Web site — and the site needs a Book
Examples section. If that section isn’t quite finished when the site launches, disaster need not ensue —
provided the designer planned ahead to accommodate new sections, and built that capability into the site.
You simply leave out any links to that section of the site (as shown in Figure 18-2) when you launch.

fis ta _rnu-ruhu

--"-'.'.'!'!m“ D1 3| Dk ﬁ-n--.m- Hra-3m-d *H S
. o f

EEEETTEET ¢ bosi cortemts b Bash LBLs b Contast U

L sy e, s

Welcome 1'9 XML Fnr blnml-l:!

¥au havw racched tha K2 La- Sormrser, Grd Eddian Wb Vagee, 3 charming, ond bipethly bl pul, sddhar ba e

Wb usivarse. Thase pages are diwigand bz aid you in three by wrnes

B Tabalpyou fiad oot irfarrehes sbead XML on the Wick

@ Tr prowide sorking somng e el eode foe ol Phe ML Tmeks o tha baak
B Tonbrades XHL For Oumvsis, Jed Edihign — v T aedosf resoarce Toe Xl agtarid ofMissl
B
T done wiviga i o v rsabon Peiad. Hiwg spaady, Fhin wiia han Basn dioad ink o Fosr aas-To- vl ie sechiare
& [fools Cowtarta A ssrcleha bxting of ceorptting i the Xl for Dommiies, Ird Edisian boch
o [Pl LB - L T | 1 LB i e i That B
T TR s " =l
3 Do [T [e

Figure 18-2: TheXML For Dummies site without the book examples.

When the book examples section is ready, you simply add it to the site and add a link to the main
navigation elements, as shown in Figure 18-3.

RN ¢ vee comtursts B Bosh LBLs b Btk Eamghen ® Comtuet L

e e e T T Ty

s Welcome to XML Fnr' hlmi-l:l!

¥ an have naached the K For Domewar, 3rd £ddia |T.l:-|-ut_'|\:: TEharmimg, oned gy bl p il addiha B e
Wb yrimeres Thase poges e desigaed 1o ciad s in ree bey are

B Tabalpyou find cursoed irformehes sbaad XML on the Wk

W T o e ik deg o gy i el 2ade P all Phe XRAL Rk o rha Basl

B Tontredein ML For Dumrmesn, Jrd Edibion — e Travd et resource for il anlariad of flisel
T wome suvigadion g roabos Dessed avee sosedy, Phin vt s baen doad 1k s e gnefo swdll re sesiors
& [lodk Cortamtn A ssrglehe buhing of croryptting n the il For Dommien, Ird Editian booh
o [als UG - Lini T | Tt LB o oy i The sl
PR T s 5 2l
T [T [i

Figure 18-3: The XML For Dummies site with the book examples.

As long as you know the resources are coming, you can create a navigation scheme that easily
accommodates the book examples section when it's ready to add. Without a site map and a complete
plan for the site, however, integrating new sections can suck up way too much time and effort.

Although you want visitors to your site to know that you plan on expanding it over time, it's not a
good idea to create “under construction” sections that don't include much of anything except the hint that
they will contain something someday. Instead, consider having a small section of your home page
highlight some things coming soon so visitors know new information will be available later. Users are
disappointed if your site design merely hints at information it doesn’t really have yet.

Using amap as a visual guide for your users

Site maps aren’t just for site developers. Even when you devise a solid navigation scheme that leads
people to the exact information they need to find, a site map can be a supplemental navigational tool that
gives them a different way to find what they're looking for.

Unlike a series of navigation menus or links, a site map lays out all contents of your site so visitors can see
all their options at once.

Everyone approaches finding information in a different way. It's up to you to give visitors as
many options as you can (realistically) for navigating your site. Some people like to be led; others like to
rummage around; still others like to see every possible option and choose the one they like best.

The downside to site maps is that they grow as your site grows. Depending on the size and complexity of
your site, your map may take several screens to display. When you surf the Web, you'll notice that
massive sites such as M cr osoft. comHP. com and Anazon. comdon't offer site maps because maps
of their sites would be huge and unwieldy. However, medium and large sites (such as Synant ec. conj
use them effectively.

In the end, only you can decide whether a site map is a good navigation tool for your
site. If you only have a few pages, a site map might be overkill. However, if your site has several sections
and you can think of different ways to access your content, a site map might be the best choice.

You can design your site map however you'd like and use any combination of text, graphics, and
links. Many maps are just a simple collection of links. Remember that you don’t want the map to take too
long to download or to be too hard to read. The map is a navigational tool; it should be simple and easy to
use.Chapter 5 includes information on how to create and manage hyperlinks.

Establishing Solid Navigation

The navigation you use on your site can make or break it. If visitors can’t find what they're looking for on
your site, chances are they will leave and never come back. The type of navigation you use on your site
depends on how many pages you put on it— and on how you organize them. If you only have a few
pages, your navigation may be a simple collection of links on the home page that help users jump to each
page. However, if your site has many pages organized into different sections, your home page may only
link to those sections and not to each page.

For example, the Dumm es. comsite houses a large collection of pages organized as a variety of sections;
it would be impractical to link to all the pages in any navigation scheme. Also, the site includes articles on
a wide variety of topics, as well as book information. The site could be organized into books and articles,
but visitors are likelier to be looking for information on a particular subject, so the site is organized by topic.
The home page, shown in Figure 18-4, prominently displays these different topic areas on the left.

| Tlw D#E View Towssiies Teals el ﬁ

[ere——m
Ermw T

by T JMMIE.S %M
s DUM

e Fometiurig ho (et T Week's Sednctions

hewacerd Camputing Eﬁ- Uik 25 of! poer et oo parchae
i [al o (gt Sy’
e vtwmiat
— Fera 30 Frogramming
® Cowatirn Soope Cooe
Ty Health, Mind & Sgpiric -
% Lonuik o0 Disr e

1P B (rnier

Fop dxlormotion aad inight pas yon g Sr=rafsr
RALTTIRE
Il Wik T | |4
Earvewy. mileims givad Dhivemms irtsias e =l
Do | ' i

Figure 18-4: The Dummies.com site is organized by topic.

When you click into one of these topic areas, the remaining topic areas are available in a navigation bar
across the top of the page (as shown in Figure 18-5). You don't have to return to the home page to jump
from topic to topic.

e s 1]
(hrpiney Anmpavmy OPTDRDT AEHENE | g saie u::hom s T s

Frataed Tithen in
Tra wiwmei

Figure 18-5: The main topic areas on the Dummies.com site are accessible from the top navigation

bar.

As you can also see from Figure 18-5, each topic has its own sub-navigation area (at left, echoing the
layout the home page) that lists sub-topics within the topic. Although the links are different, the general
navigation scheme is consistent throughout the site. Thus visitors know what to expect as they navigate
around the site.

Finally, the topmost navigation area of each page includes a regular collection of links that appear on
every page of the site to help visitors quickly access important areas from anywhere: a site search, help,
account information, and a shopping cart. Every page has the same set of links to information about
Dummies, the form to register for eTips, how to contact Dummies, the site copyright statement, and the
site privacy policy. Like the shopping cart and help links, these links have to be on every page, but need
not be displayed as prominently. Adding them to a consistent site footer keeps them accessible to visitors
without obscuring key content for any given topic or sub-topic.

If you create a map to aid site development, you can also use it as a guide for the kind of navigational tools
you need to create for your site. Consider each page on the map in turn; list the links that each page must
include. A pattern normally emerges that can help you identify the main navigation tools your site needs
(such as links to all main topic areas and copyright information, as on the Dummies site), as well as sub-
navigation tools (such as links to sub-topics on the topic pages).

After you know what tools you need, you can begin to design the visual scheme for your Ul. Do you want to
use buttons across the top, buttons down the side, or both? Do you need a footer that links to copyright or
privacy information? If you have sections within sections within sections, how can you best help people
navigate through them? Answering questions like these is the route to a solid navigation system that helps
users find their way around your site — letting them focus on what they came for rather than on how to get
there.

Whatever navigation scheme you finally devise, always give your visitors a way to get back to your
home page from wherever they are on the site. Your site’'s home page is the gateway to the rest of the site,
and if visitors get lost or want to start again, make sure they can get back to Square One with no trouble.

After you design your site navigation scheme and put together a few pages, ask
someone who isn’t familiar with your site to review it and try to use it. To help them with their testing, give
them a list of three or four tasks you'd like them to complete — pages to visit or a form to fill out, for
example. If your test visitor gets lost or has lots of questions about how to navigate the site, you may need
to revisit your scheme. Your reviewer may also have suggestions on ways to make the navigation features
clearer and easier to use. Remember, you know your site and its content like the back of your hand —in
effect, you know too much. You may not see gaps in the navigation system that a first-time user will
probably turn up right away. It's better to find those gaps during site development than to be pelted with
complaints after the site goes live.

Good Linking Practices

The Web wouldn't be the Web without hyperlinks - after all, they can connect your site to the rest of the
Web and turn a collection of pages into a cohesive site. But overusing or misusing links can detract from
your site and even lose you some business.

Choose your off-site links wisely

Internal linking is almost a walk in the park compared to external linking - after all, when you link to pages
on your own site, the pages those links point to are under your control. You know what's on them today
and what will be on them tomorrow, and even whether they will exist tomorrow. When you link to
resources on someone else's site, however, all bets are off. You don't maintain those pages, you can't
modify their content , and you certainly won't know when they disappear. Neither will your visitors - till they
slam into a 404 Page not found message (the usual sign of a brokenlink that now goes nowhere).

Links to other sites are more useful when they're relatively stable and have less chance of breaking.
Consider these suggestions:

m Link to a particular section of a site rather than a specific page on the site. Pages come and go on
sites, especially large ones, but the general organization typically stays the same, making sections a
better linking bet.

m Carefully choose what sites you link to. Sites maintained by companies don't usually go away, but
those maintained by individuals do so more often.

m Rather than linking directly to PDFs or images or other media files on a site, link to the pages onthe
site that link to those resources. Sites often update the resources and give them new names. The
page that links to the resource will almost always be updated to reflect new names, so the pageis a
safer linking bet.

Good linking practices are not a substitute for regular site maintenance. You should regularly
check (once a week if possible, once a month at least) all links from your site to external sites to be sure
they're still working. A good Web editor will do the checking for you, as will other site utilities as described

inChapter 16.

Even though you don't control the content on the Web sites you link to, providing links to them
implies your support or endorsement of those sites. When a visitor follows a link from your site to someone
else's site, he or she thinks you approve of the content on that new site. That human quirk makes a couple
of guidelines necessary:

m If you don't want to be associated with content on a particular external site, don't link to the
site. Seems obvious, doesn't it? But the only way to find out whether you approve of a seemingly
relevant site is to visit it and check it out before you link.

m Periodically review your links to be sure the sites' owners are still the same - and that the
content is still appropriate. When domain names expire, new owners may take them over and
create new content that's completely irrelevant - or, worse, damaging to your image (think
pornography).

Craft useful link text

The text you associate with links is just as important as the links you choose to use on your site. The text
gives users a hint about where the link is taking them so they can decide whether to go along for the ride.
For example, Vi sit Dunmmi es.comto read nore about this book is muchmore helpful than
Read nore about this book.

The first bit of text tells visitors they're going to leave the current site to visit Dunti es. comand read more

about a book there. The second just tells them they're going to read more about the book - and they might
be surprised to find themselves flung off one site and onto another.

Generally, when you create link text, let users know the following:
m Whether they're leaving your site.
m What kind of information the page they're linking to contains.
= How the linked site relates to the current content or page on your site

The goal of your link text should be to inform users and build their trust. If your link text doesn't give them
solid clues about what to expect from your links, they simply won't trust your links - and won't follow them.

Always avoid the use of ‘click here' in any link you create. If you link text is well
crafted, you don't need the extra words to prompt the user to click on a link. The link text should speak for
itself.

Choosing the Right Bells and Whistles

Media can offer a huge boon for your Web site, adding interactivity and some pizzazz to text and static
graphics. However, you should only use media that make your site work better (and/or support the
information on it). As a general rule, gratuitously slathering a site with media is bad media. When you
choose media for your site, ask yourself the following questions:

m Why are you adding these particular media to your site? For example, an audio clip of an
interview may be less effective than a transcript. An interactive Flash presentation can demonstrate
how a product works or teach someone how to do something - but Flash-enabled content can take
longer to download. If a medium doesn't have a clear purpose, you may want to rethink its integration
into your site.

m What are some alternatives to the chosen media? Not everyone is equipped to view (or listen to) all
media formats. Therefore make sure the information offered in your media is also available in an
alternative format. For example, if visitors to your site don't have Flash and can't interact with your
Flash navigation, how do they get around your site?

m How large is the media file? Large files may take a long time to download, so make sure the
download is well worth the wait for users. When you do choose to include large files, be sure to let
users know how large so they can choose whether to download. Also see whether you can split large
files into smaller files that visitors can access one at a time.

m Will visitors need a special plug-in or application to access the media file? If users aren't set up
to play a particular media format, they may skip using the media (or drum their fingers while the
application downloads). Be sure you let visitors know exactly what formats your media files are saved
in - and the tools needed to view those files - so they can decide whether they want to download the
media. (The wise Web-site designer also includes a way for users to bypass the media, which helps to
ensure the widest possible audience for the content. More about that in a moment.)

Working with media on the Web is a significant topic in itself. The Resources section at the end of this
chapter includes information on Web sites and books that cover media in more detail. Chapter 13 is a
good starting point for using media in your Web pages.

Making Your Site Accessible to Everyone

If you optimize your Web site for users with fast Internet connections, large monitors, the latest browsers,
and every plug-in known to humanity, you'll be severely limiting the audience for your site. Instead, you
should design your site to accommodate as many users as possible with the widest variety of equipment.

The short list of things you can do to make your site accessible includes:

Providing alternative text for all images and alternative content formats for all media.

Using Cascading Style Sheets where possible for styling (instead of <f ont > and other markup) when
you apply formatting to your documents.

Reviewing your pages in as many browsers as possible, including a text-only browser so you can get
an idea of how the various browsers handle your combination of text and markup.

Following Web Accessibility Guidelines wherever possible, as outlined by the W3C's Web Content
Accessibility Guidelines at ww. W3. or g/ TR/ WCAG.

Bobby is a Web-based tool that evaluates your Web page and lets you know exactly how accessible

it really is. We strongly suggest that you check all your pages with Bobby to find any accessibility problems
you might have overlooked. To run a Bobby scan, visit

http:// bobby. wat chfire. contf

and type the URL of the page you want to check in the URL: box.

http://bobby.watchfire.com/

Some Excellent User Interfaces

Spend a few minutes browsing the Web and you’ll be bombarded with excellent (and not-so-excellent)
examples of user interfaces. How do you know whether an interface is excellent? Simple: If you can find
what you need on a site with relatively little trouble, and you come away feeling like you had a good
experience, you've used a good interface. Two examples of excellent user interfaces are the Amazon.com
site and (believe it or not) the IRS site.

Amazon.com

Earlier on, the chapter looked at how a site’s goals directly affect its user interface, with an online store as
the prime example of defining a site’s goals and then designing an appropriate Ul. Well, behold a sterling
example: Everything about Amazon.com is designed to facilitate the buying experience. This site is divided
into sections, each represented by a different color tab across the top. Visit ww. anezon. comto see what
we’'re referring to.

Regardless of where you are in the site, you can get to any other section — you can always search,
access your shopping cart and account, get help, and (of course) check out to buy. The site’s system for
checking out is broken into easy-to-manage screens, so purchasing isn’t intimidating.

Every product page follows the same basic format, whether you're shopping for a book or for a garden
hose, large amounts of help and FAQ text are well divided and easy to navigate. Simply click on the HELP
link in the upper-right corner.

There isn’t anything on the Amazon.com site that doesn’t have to do with selling products online. You
won't find any gratuitous media, but you will find a special feature that enables you to preview book
contents right on the page. The goals of the site are well reflected in its organization and design.

The IRS

The IRS Web site contains a great deal of important information relevant to everyone in the United States.
That means the site has to be easily navigable and well organized so users can find what they're looking
for. The site is divided into sections, each of which is linked from a persistent navigation bar at the top of
the Ul, as shown in Figure 18-6.

Tds G88 View Drvssiies Toals Dy =

9 Internal Revenue Service ..,

Dally

Check Yous Withalding
R i 0y % s B "

e P
Pl dimies e

s P Tox linip. = Gome in Wa're Osan

Cumrin i Seulicnn = L dnaim fisal it
"
: .r W s ALY B T e] et
& - file
=]
feite [T vt =

Figure 18-6: Main areas on the IRS site are accessible from a persistent navigation bar.

Each main area of the site uses the same layout, including a left column of fields for searching both the
site in general and specific IRS forms. Then there’s a list of contents for the site, links to relevant

resources, and access to topics of discussion. Although the actual content, resources, and topics change
from section to section, they are accessible on all pages from the same spot, as shown in Figure 18-7.

eplary T Sl wwas . Mopeun) Mytwiiont gl aoni

Tds @ View [gvesiios Teals liely

{8 Internal Revenue Service o=,
BUREETWEAT AF TRE FTERANE Diuily

= The Newsroom
ek Vit Eargdiy Tax Salilian

Biara TErpiypas AUARELRSS

Exnien fievl
ML LTI
LRV fain
BdiFws Bawin

- i ! s !

sgaret v s
—— e A

Figure 18-7: Each area of the site uses the same general layout.

The inclusion of a persistent link enables a visitor to search for a publication from any page. Such features
contribute significantly to one of the site’s primary goals: making publications easily available. If you're
doing research on a particular tax topic and realize you need a particular publication, you can search for it
right from the page that let you know you needed it in the first place. You don't have to jump to a search
page first, which saves steps and makes publications that much more accessible.

In general, the IRS site is a great example of making information that users will need most (like
publications) immediately accessible. The information on the site is well organized — and it's obvious the
site designers work diligently to create a Ul that supports users in their search for tax information.

More Resources on Ul Design

We've barely scratched the surface of Web and Ul design in this chapter, but we're confident it's enough to get
started. We also recommend the following Web sites and books on site and interface design if you want to dig «
into creating great Uls:

m For a crash course on Web design basics read Design Basics from Webmonkey at

http://hotwired.|lycos. coml webnonkey/ ht Ml / 97/ 05/i ndex2a. ht m

In addition, its Site Redesign Tutorial offers an interesting perspective on what it takes to rework a site's des
Read it at

http://hotwired.|ycos. coml webnonkey/design/site building/tutorials/ tutorial4

m Jakob Nielsenis committed to creating accessible Web content. His Web site, htt p: // useit. comisch
full of resources and articles on creating accessible sites.

m Hey, negative examples are useful too. Web Pages That Suck helps you learn about good design by evalu
bad design. Be sure your site doesn't look like any of those featured at wwv. webpagest hat suck. cont .

m Web Design For Dummies by Lisa Lopuck (Wiley Publishing, Inc.) is another step in the direction of a
sophisticated Web site with a knockout look.

= Web Usability For Dummies by Richard Mander and Bud Smith (Wiley Publishing, Inc.) can help you fine-tt
your site to make it amazingly easy to use (which is a great help in keeping your visitors coming back for m

http://hotwired.lycos.com/webmonkey/html/97/05/index2a.html
http://hotwired.lycos.com/webmonkey/design/site_building/tutorials/ tutorial4.html
http://useit.com

Part VI: The Part of Tens

In This Part:

Chapter 19: Ten Ways to Exterminate Web Bugs

Chapter 20: Ten HTML Do’s and Don’ts

In this part. ..

Here we help you catch potential bugs and errors in your Web pages, cover top do’s and don'’ts for HTML
markup, and point out key HTML resources you can use to extend your knowledge, skills, and sources of
inspiration. Enjoy!

Chapter 19: Ten Ways to Exterminate Web Bugs

Overview
In This Chapter
= Avoiding markup and spelling faux pas
m Keeping links hot and fresh
m Gathering beta testers to check, double-check, and triple-check your site
m Applying user feedback to your site

After you put the finishing touches on a set of pages (but before you post them on the Web for the world to
see) is the time to put them through their paces. Testing is the best way to control your site's quality.

Thorough testing mustinclude content review, analysis of HTML syntax and semantics, link checks, and
various sanity checks to make doubly sure that what you built is what you really wanted. Read this chapter
for some gems of testing wisdom (learned from a lifetime of Web adventures) - as we seek to rid your
Web pages of bugs, errors, gaucheries, and lurking infelicities.

Make a List and Check It - Twice

Your design should include a road map (often called a site map) that tells you what's where in every
individual HTML document in your site, and the relationships among these pages. If you're really smart,
you've kept this map up-to-date as you moved from design to implementation. (In our experience, things
always change when you go down this path.) If you're merely as smart as the rest of us, don't berate
yourself - update that map now.Be sure to include all intra- and inter-document links.

A site map provides the foundation for a test plan. Yep, that's right - effective testing isn't random. Use the
map to

m Investigate and check every page and every link systematically.

m Make sure everything works as you think it should - and that what you built has some relationship
(however surprising) to your design.

m Define the list of things to check as you go through the testing process.

m Check everything (at least) twice. (Red suit and reindeer harness optional.)

Master Text Mechanics

By the time any collection of Web pages comes together, you're looking at thousands of words, if not
more. Yet many Web pages get published without even a cursory spell check, which is why we suggest -
no, demand - that you include a spell check as a step when testing and checking your materials. (Okay,
we don't have a gun to your head, but you know it's for your own good.) Many HTML tools, such as
FrontPage, HomeSite, and Dreamweaver, include built-in spell checkers and that's the first spell-check
method you should use. These HTML tools also know how to ignore the HTML markup and just check
your text.

Even if you only use HTML tools occasionally and hack out the majority of your HTML by hand, perform a
spell check before posting your documents to the Web. (For a handy illustration of why this step matters,
try keeping a log of spelling and grammar errors you find during your Web travels. Be sure to include a
note on how those gaffes reflect on the people who created the pages involved. Get the message?)

You can use your favorite word processor to spell check your pages. Before you
check them, add HTML markup to your custom dictionary, and pretty soon, the spell checker runs more
smoothly - getting stuck only on URLs and other strange strings that occur from time to time in HTML files.

If you'd prefer a different approach, try any of the many HTML-based spell-checking services now
available on the Web. We like the one at the Doctor HTML site, which you can find online at
WW2. i magi war e. cont RxkHTM./ .

If Doctor HTML's spell checker doesn't float your boat, visit a search engine, such as ww. yahoo. com
and use web page spell check as a search string. Doing so can help you produce a list of spell-
check tools made specifically for Web pages. Poke around ww. webr ef er ence. comfor more pointed
pointers, if you feel so inclined!

One way or another, persist until you root out all typos and misspellings. Your users may not know to thank
you for your impeccable use of language - but if they don't trip over any errors while exploring your work,
they'll have a higher opinion of your pages (and of their creator). Even if they don't know why. Call it stealth
diplomacy.

Lack of Live Links — A Loathsome Legacy

We performed an unscientific, random sample to double-check our own suspicions; users told us that
positive impressions of a particular site are proportional to how many working links they find there. The
moral of this survey: Always check your links. This step is as true after you publish your pages as it is
before they're made public. Nothing irritates users more than a link that produces the dreaded 404
Server not found errorinstead of the good stuff they seek! Remember, too, that link checks are as
indispensable to page maintenance as they are to testing.

If you're long on twenty-first-century street smarts, hire a robot to do the job for you:
They work really long hours (no coffee breaks), don’t charge much, and faithfully check every last link in
your site (or beyond, if you let them). The best thing about robots is that you can schedule them to do their
jobs at regular intervals: They always show up on time, always do a good job, and never complain (though
we haven't yet found one that brings homemade cookies or remembers birthdays). All you have to dois
search online for words such as link check or robot. You'll find lots to choose from!

We're rather fond of a robot named MOMspider, created by Roy Fielding of the W3C. Visit the MOMspider
siteathttp://ftp.ics.uci.edu/ pub/websoft/MIVspi der/ . This spider takes some work to use,
but you can set it to check only local links, and it does a bang-up job of catching stale links before users
do. (Note that some HTML software, such as HomeSite, comes with a built-in link checker so you can
check your links before you post your pages.)

If a URL points to one page that immediately points to another (a pointer), you’re not entitled to just
leave the link alone. Sure, it technically works, but for how long? And how annoying! So if your link
checking shows a pointer that points to a pointer (yikes), do yourself (and your users) a favor by updating
the URL to point directly to the content’s real location. You save users time, reduce bogus traffic onthe
Internet, and generate good cyberkarma.

If you must leave a URL active even after it has become passé to give your users time to bookmark your
new location, you can instruct newer browsers to jump straight from the old page to the new one by
including the following HTML command in the old document's <head> section:

<nmeta http-equiv="refresh" content="0"; url="newurl here">

This nifty line of code tells a browser (if sufficiently new) that it should refresh the page. The delay before
switching to the new page is specified by the value of the cont ent attribute, and the destination URL by
the value of the ur | attribute. If you must build such a page, be sure to include a plain-vanilla link in its
<body> section, too, so users with older browsers can follow the link manually, instead of automatically.
You may also want to add some text that tells the visitors to update their bookmarks with the new URL.
Getting there may not be half the fun, but it's the whole objective.

http://ftp.ics.uci.edu/pub/websoft/MOMspider/

Look for Trouble in All the Right Places

You and a limited group of users should test your site well before you share it with the rest of the world -
and more than once. This process is called beta testing, and it's a bona fide, five-star must for a well-built
Web site, especially if you intend it for business use. When the time comes to beta-test a site, bring in as
rowdy and refractory a crowd as you can find. If you have picky customers (or colleagues who are pushy,
opinionated, or argumentative), be comforted to know that you have found a higher calling for them: Such
people make ideal beta-testers - if you can get them to cooperate.

Don't wait till the very last minute to test your Web site. Sometimes the glitches found during the beta-
test phase can take weeks to fix. Take heed: Test early and test often, and you'll thank us in the long run!

Beta-testers use your pages in ways you never imagined possible. They interpret your content to mean
things you never intended in a million years. They drive you crazy and crawl all over your cherished beliefs
and principles. And they do all this before your users do! Trust us, it's a blessing in disguise.

These colleagues also find gotchas, big and small, that you never knew existed. They catch typos that
word processors couldn't. They tell you things you left out and things that you should have omitted. They
give you a fresh perspective on your Web pages, and they help you to see them from extreme points of
view.

The results of all this suffering, believe it or not, are positive. Your pages emerge clearer,
more direct, and more correct than they would have if you tried to test them by yourself. (If you don't
believe us, of course, you could try skipping this step. And when real users start banging on your site,
forgive us if we don't watch.)

Cover All the Bases with Peer Reviews

If you're a user with a simple home page or a collection of facts and figures about your private obsession,
this particular tip may not apply to you. But feel free to read along anyway — it just might come in handy
down the road.

If your pages express views and content that represent an organization, chances are oh, about 100
percent that you should subject your pages to some kind of peer-and-management review before
publishing them to the world. In fact, we recommend that you build reviews into each step along the way
as you build your site — starting by getting knowledgeable feedback on such basic aspects as the overall
design, writing copy for each page, and the final assembly of your pages into a functioning site. These
reviews help you avoid potential stumbling blocks, such as unintentional off-color humor or unintended
political statements. If you have any doubts about copyright matters, references, logo usage, or other
important details, get the legal department involved (if you don’'t have one, you may want to consider a
little consulting help for this purpose).

Building a sign-off process into reviews so you can prove that responsible parties
reviewed and approved your materials may be a good idea. We hope you don't have to be that formal
about publishing your Web pages, but it's far, far better to be safe than sorry. (So is this process best
calledcovering the bases, or covering, ah, something else? You decide.)

Use the Best Tools of the Testing Trade

When you grind through your completed Web pages, checking your links and your HTML, remember that
automated help is available. If you visit the W3C HTML validator at ht t p: / / val i dat or . w3. or g, you'll
be well on your way to finding computerized assistance to make your HTML pure as air, clean as the
driven snow, and standards-compliant as, ah, really well-written HTML. (Do we know how to mix a
metaphor, or what?)

Likewise, investigating the Web spiders discussed earlier in the chapter is a good idea; use them regularly
to check links on your pages. These faithful creatures tell you if something isn't current, so you know
where to start looking for links that need fixing.

http://validator.w3.org

Foster Feedback

Even after you publish your site, testing never ends. (Are you having flashbacks to high school or college
yet? We know we are.) You may not think of user feedback as a form (or consequence) of testing, but it
represents the best reality-check that your Web pages are ever likely to get, which is why doing everything
you can — including offering prizes or other tangible inducements — to get users to fill out HTML forms on
your Web site is a good idea.

This reality-check is also why reading all the feedback you get is even better. Go out and solicit as much
as you can handle (don’t worry; you'll soon have more). But the best idea of all is to carefully consider the
feedback that you read and then implement the ideas that actually bid fair to improve your Web offerings.
Oh, and it's a really good idea to respond to feedback with personal e-mail, to make sure your users know
you're reading what they're saying. If you don’t have time to do so, make some!

Even the most finicky and picky of users can be an incredible asset: Who better to pick over
your newest pages and to point out those small, subtle errors or flaws that they revel in finding? Your
pages will have contributed mightily to the advance of human society by actually finding a legitimate use
for the universal human delight in nitpicking. And your users develop a real stake in boosting the success
of your site. Working with your users can mean that some become more involved in your work, helping
guide the content of your Web pages (if not the rest of your professional or obsessional life). Who could
ask for more? Put it this way: You may yet find out, and it could be remarkably helpful.

If You Giveto Them, They'll Give to You!

Sometimes, simply asking for feedback or providing surveys for users to fill out won't produce the results
you might be seeking - either in quality or in volume. Remember the old days when you'd occasionally get
a dollar bill in the mail, to encourage you to fill out a survey? It's hard to deliver cold, hard cash via the
Internet, but a little creative action on your part should make it easy for you to offer your users something
of value in exchange for their time and input. It could be an extra month on a subscription, discounts on
products or services, or some kind of freebie by mail. (Maybe now you can finally unload those stuffed Gila
Monsters you bought for that trade show last year. . .)

But there's another way you can give back to your users that might not even cost you too much. An offer to
send participants the results of your survey, or to otherwise share what you learn, may be all the incentive
participants need to take the time to tell you what they think, or to answer your questions. Just remember
that you're asking your users to give of their time and energy, so it's only polite to offer something in return.

Schedule Site Reviews

Okay, you probably understand that every time you change or update your Web site, you should test its
functionality, run a spell check, perform a beta test, and otherwise jump through important hoops to put
your best foot forward online. But sometimes, you'll make just a small change — a new phone number or
address, a single product listing, a change of name or title to reflect a promotion and so on — and you
won'’t go through the whole formal testing process for “just one little thing.”

That’s perfectly understandable, but one thing inevitably leads to another, and so on. Plus, if you solicit
feedback, the chances are good that you'll get something back that points out a problem you'd never
noticed or considered before. It's essential to schedule periodic Web site reviews, even if you've made no
big changes or updates since your last review. Information grows stale, things change, and tiny errors have
a way of creeping in as one small change succeeds another.

Just as you take your car in for an oil change, or swap out your air-conditioning filter, you should plan to
check out your Web site regularly. Most big organizations we talk to do this every three months or so;
others do it more often. Even when you think you have no bugs to catch, errors to fix, or outdated
information to refresh, you'll often be surprised by what a review turns up. Make this part of your routine,
and your surprises will be less painful — and require less work to remedy!

Chapter 20: Ten HTML Do's and Don'ts

Overview

In This Chapter
m Concentrating on content
m Going easy on the graphics, bells, whistles, and hungry T. Rexes
m Creating well-formulated HTML and then testing, testing, testing
m Finishing the work after the building is done

By itself, HTML is neither excessively complex nor overwhelmingly difficult. As some high-tech wags
(including a few rocket scientists) have put it, HTML ain't rocket science! Nevertheless, a few important
do's and don'ts can make or break the Web pages you build with HTML. Consider these humble
admonishments as guidelines to help you make the most of HTML without losing touch with your users or
watching your page blow up on its launch pad.

If some fundamental points that we made throughout this book seem to crop up here too (especially
regarding proper and improper use of HTML), it's no accident. Heed ye well the prescriptions and avoid ye
the maledictions. But hey, we know they're your pages and you can do what you want with them. Your
users will decide the ultimate outcome. (We'd never say, 'We told you so!" Nope. Not us.)

Never Lose Sight of Your Content

So we return to the crucial question of payload: the content of your page. Why? Well, as Darrell Royal
(legendary football coach of the University of Texas Longhorns in the ‘60s and ‘70s) is rumored to have
said to his players, “Dance with who brung ya.” In normal English (as opposed to Texan), we think this
means that you should stick with the people who’ve supported you all along and give your loyalty to those
who've given it to you.

We're not sure what this means for football, but for Web pages it means keeping faith with your users and
keeping content paramount. If you don’t have strong, solid, informative content, users quickly get that
empty feeling that starts to gnaw when a Web page is content-free. Then they’'ll be off to richer hunting
grounds on the Web, looking for content.

To satisfy their hunger, place your most important content on your site’s major pages. Save the frills
and supplementary materials for secondary pages. The short statement of this principle for HTML is,
“Tags are important, but what’s between the tags — the content — is what really counts.” For a refresher
course on making your content the best it can possibly be, take a spin through Chapter 2.

Structure Your Documents and Your Site

Providing users with a clear road map and guiding them through your content is as important for a single
home page as it is for an online encyclopedia. When longer or more complex documents grow into a full-
fledged Web site, a road map becomes even more important. This map ideally takes the form of (yep, you
guessed it) a flow chart that shows page organization and links. If you like pictures with a purpose, the
chart could appear in graphic form in an explicitly labeled 'site map.'

We're strong advocates of top-down page design: Don't start writing content or placing tags until you
understand what you want to say and how you want to organize your material. Then start building your
HTML document or collection of documents with paper and pencil (or whatever modeling tool you like
best). Sketch out relationships within the content and among your pages. Know where you're building
before you roll out the heavy equipment.

Good content flows from good organization. It helps you stay on track during page design,
testing, delivery, and maintenance. And organization helps your users find their way through your site.
Need we say more? Well, yes: Don't forget that organization changes with time. Revisit and critique your
organization and structure on a regular basis, and don't be afraid to change either one to keep up with
changesin your content or focus.

Keep Track of Those Tags

Although you're building documents, it's often easy to forget to use closing tags, even when they're
required (for example, the </ a> that closes the opening anchor tag <a>). Even when you're testing your
pages, some browsers can be a little too forgiving; they compensate for your errors, leaving you with a
false sense of security.

The Web is no place to depend on the kindness of strangers; scrutinize your tags to head off
possible problems from other browsers that may not be quite so understanding (or lax, as the case may
be).

As for the claims that some vendors of HT ML authoring tools make (“You don’t even have to know any
HTML!"), all we can say is, Uh-huh, surrre. HTML itself is still a big part of what makes Web pages work; if
you understand it, you can troubleshoot with minimum fuss. Also, ensuring that your page’s inner workings
are correct and complete is something only you can do for your documents, whether you build them
yourself or a program builds them for you.

We could go on ad infinitum about this, but we’ll exercise some mercy and confine our remarks to the
most pertinent:

m Keep track of tags yourself while you write or edit HTML by hand. If you open a tag — be it an
anchor, a text area, or whatever — create the closing tag for it right then and there, even if you have
content to add. Most HT ML editors do this for you.

m Use a syntax checker to validate your work during the testing process. Syntax checkers are
automatic tools that find missing tags — and other ways to drive you crazy! Use these whether you
build pages by hand or with software assistance. Here's the URL for the W3C’s HT ML validator:
http://validator.w3.ora/.

m Obtain and use as many browsers as you can when testing pages. This not only alerts you to
missing tags; it can also point out potential design flaws or browser dependencies (covered in a
section later in this chapter). This exercise also emphasizes the importance of alternate text
information. That’s why we always check our pages with Lynx (a character-only browser).

m Always follow HTML document syntax and layout rules. Just because most browsers don'’t require
elements such as <ht nl >,<head>, and <body> doesn’'t mean you can omit them; it just means that
browsers don’t give a hoot if you do. But browsers per se are not your audience. Your users (and, for
that matter, future browsers) may indeed care.

Although HTML isn’t exactly a programming language, it still makes sense to treat it like one.
Following formats and syntax helps you avoid trouble, and careful testing and rechecking of your work
ensures a high degree of quality, compliance with standards, and a relatively trouble-free Web site.

http://validator.w3.org/

Make the Most from the Least

More is not always better, especially when it comes to Web pages. Try to design and build your pages
using minimal ornaments and simple layouts.

Don't overload pages with graphics; add as many levels of headings as you can fit, and make sure your
content is easy to read and follow. Make sure any hyperlinks you include add real value to your site.

Gratuitous links to useless information are nobody's friend; if you're tempted to link to a Web cam
that shows a dripping faucet, resist, resist, resist!

Structure and images exist to highlight content. The more bells, whistles, and dinosaur
growls dominate a page, the more distracted from your content visitors will be. Use structure and graphics
sparingly, wisely, and as carefully as possible. Anything more can be an obstacle to content delivery. Go
easy on the animations, links, and layout tags, or risk having your message (even your page) devoured by
a hungry T. Rex

Build Attractive Pages

When users visit Web pages with a consistent framework that focuses on content, they're likely to feel
welcome. The important thing is to supplementcontent with graphics and links — not to trample users with
an onslaught of pictures and links. Making Web pages pretty and easy to navigate only adds to a site’s
basic appeal, and makes your cyber-campers even happier.

If you need inspiration, cruise the Web and look for layouts and graphics that work for you. If you take
the time to analyze what you like, you can work from other people’s design principles without having to
steal details from their layouts or looks (which isn't a good idea anyway).

As you design your Web documents, start with a basic, standard page layout. Pick a small but interesting
set of graphical symbols or icons and adopt a consistent navigation style. Use graphics sparingly (yes,
you've heard this before); make them as small as possible — limit size, number of colors, shading, and so
on, while retaining eye appeal. When you build simple, consistent navigation tools for your site, label them
clearly and use them everywhere. You can make your pages appealing, informative, and inviting if you
invest the time and effort.

Avoid Browser Dependencies

When you're building Web pages, the temptation to view the Web in terms of your favorite browser is hard
to avoid. That's why you should always remember that users view the Web in general (and your pages in
particular) from many perspectives - through many different browsers.

During the design and writing phases, you'll probably ping-pong between HTML and a browser's-eye view
of your work. At this point in the process, we recommend switching from one browser to another, testing
your pages among a group of browsers (including at least one character-mode browser). This helps
balance how you imagine your pages and helps keep you focused on content.

There are public telnet servers with Lynx (a character-mode browser) installed that you can use for
free and don't require software installation. Visit www. tri |l | - hone. com | ynx/ public |ynx. htm for
a good list of telnet servers featuring Lynx.

During testing and maintenance, you must browse your pages from many different points of view. Work
from multiple platforms; try both graphical and character-mode browsers on each page. Such testing
takes time but repays that investment with pages that are easy for everyone toread and follow. It also
helps viewers who come at your materials from platforms other than your own, and helps your pages
achieve true independence from any single viewpoint. Why limit your options?

If several pages on your site use the same basic HTML, create a single template for those pages.
Test the template with as many browsers as you can find. When you're sure the template is browser-
independent, use it to create other pages. This helps you ensure that every page looks good, regardless of
which browser a visitor might be using, and puts you on your way to real HTML enlightenment.

Think Evolution, Not Revolution

Over time, Web pages change and grow. Keep a fresh eye on your work, and keep recruiting fresh eyes
from the ranks of those who haven't seen your work before, to avoid what we call “organic acceptance.”

This concept is best explained by the analogy of your face and the mirror: You see it every day; you know it
intimately, so you aren’t as sensitive as someone else to the impact of changes over time. Then you see
yourself on video, or in a photograph, or through the eyes of an old friend. At that point, changes obvious
to the world reveal themselves to you as you exclaim, “I've gone completely gray!” or “My spare tire could
mount on a semi!” or “Who the heck is that?”

As with the rest of life, changes to Web pages are usually evolutionary, not revolutionary. They proceed
with small daily steps; big radical leaps are rare. Nevertheless, you must stay sensitive to the supporting
infrastructure and readability of your content as pages evolve. Maybe the lack of on-screen links to each
section of your Product Catalog didn’t matter when you had only three products — but now that you offer
25, it’s a different story. You've heard that form follows function; in Web terms, the structure of your site
needs to follow changes inits content. If you regularly reevaluate your site’s effectiveness at
communicating its contents, you'll know when it's time to make changes, whether large or small.

This is why user feedback is crucial. If you don't get feedback through forms or other means, go out and
aggressively solicit info from your users. If you're not sure how you're doing, then consider: If you don't ask
for feedback, how can you tell?

Navigating Your Wild and Woolly Web

Users who view the splendor of your site don't want to be told you can't get there from here. Aids to
navigation are vital amenities on a quality Web site. In Chapter 9, for example, we introduce the concept of
anavigation bar - a consistent graphical place to put buttons that help users get from A to B. By judicious
use of links and careful observation of what constitutes a complete screen (or screenful) of text, you can
help your users minimize (or even avoid) scrolling. Text anchors make it easy to move to the previous and
or next screens, as well as to the top, index, and bottom in any document. Just that easy, just that simple,
or so it appearsto the user.

We believe pretty strongly in the low scroll rule: That is, users should have to scroll no more than one
screenful in either direction from a point of focus or entry without finding a navigation aid to let them jump
(not scroll) to the next point of interest.

We don't believe that navigation bars are required, or that the names for controls should always be the
same. We do believe that the more control you give users over their reading, the better they like it. The
longer a document gets, the more important such controls become; they work best if they occur about
every 30 lines in longer documents (or in a separate, always-visible frame if you use HT ML frames).

Beating the Two-Dimensional Text Trap

Conditioned by centuries of printed material and the linear nature of books, our mindsets can use an
adjustment. The nonlinear potentials of hypermedia give the Web a new definition for the term document.
Of course, it's tempting to pack your pages full of hyper-capabilities until it resembles a Pony Express
dynamite shipment and gallops off in many directions at once. To avoid this, judge your hypermedia
according to whether it (1) adds interest, (2) expands on your content, or (3) makes a serious — and
relevant — impact on the user.

Within these constraints, such material can vastly improve any user’s experience of your site.

Stepping intelligently outside old-fashioned linear thinking can improve your users’ experience of your site
and make your information more accessible to your audience. That's why we encourage careful use of
document indexes, cross-references, links to related documents, and other tools to help users navigate
within your site. Keep thinking about the impact of links as you look at other people’s Web materials; it's
the quickest way to shake free of the linear-text trap. (The printing press was high-tech for its day, but that
was 500 years ago!) If you're looking for a model for your site’s behavior, don't think about your new trifold
four-color brochure, however eye-popping; think about how your customer-service people interact with
new customers on the telephone. (What can I do to help you today?)

Overcome Inertia through Constant Vigilance

When you're dealing with your Web materials post-publication, remember that it's only human to goof off
after finishing a big job. Maintenance may not be nearly as heroic, inspiring, or remarkable as creation, yet
it represents most of the activity that's needed to keep any document alive and well. Sites that aren't
maintained often become ghost sites; users stop visiting sites when developers stop working on them.
Never fear - a little work and attention to detail keeps your pages fresh. If you start with something valuable
and keep adding value, a site's value appreciates over time - just like any other artistic masterpiece. Start
with something valuable and leave it alone, and it soon becomes stale and loses value.

Consider your site from the viewpoint of a master aircraft mechanic: Correct maintenance is areal,
vital, and ongoing accomplishment, without which you risk a crash. A Web site, as a vehicle for important
information, deserves regular attention; maintaining a Web site requires discipline and respect. See
www. di sobey. contf ghost sites/i ndex. shtml for a humorous look at ghost sites.

Keeping up with constant change translates into creating (and adhering to) a regular
maintenance schedule. Make it somebody's job to spend time on a site regularly; check to make sure the
job's getting done. If someone is set to handle regular site updates, changes, and improvements, normally
they start flogging other participants to give them things to do when scheduled site maintenance rolls
around. Next thing you know, everybody's involved in keeping information fresh - just as they should be.
This keeps your visitors coming back for more!

Part VII: Appendixes

In This Part:

Appendix A: HTML 4 Tags
Appendix B: HTML Character Codes

Appendix C: Glossary

In this part. ..

This part of the book supplements the main text with useful resources and summary information. It
includes a complete list of HTML elements, with syntax and brief explanations, a reasonably complete
listihg of common HTML character codes, a glossary of technical terms found elsewhere in the book, and
an index you can use to find your way around the text. We hope you'll not only get to know these
supporting members of our cast, but that you'll also use them often and well!

Appendix A: HTML 4 Tags

In This Appendix

Tracking HTML elements
Getting a heads up on deprecated and empty tags

Tracking tag attributes

Keeping track of the bountiful bevy of HTML elements can often be tricky, even for experienced
Webmasters. To make your HTML life a bit easier, we created this appendix, which includes a table that
lists the following information for each element:

Name:The name of the element.
Chapter number: The chapter(s) in which you can find information about the element.

Some of the more complicated, less frequently used, or deprecated elements are not
discussed in detail in this book. Please visit the W3C site at
www. W3. or g/ TR/ ht il 4/ i ndex/ el enent s. ht il for more information on these elements.

Empty: If the tag is listed with the letter E, the tag is an empty tag and is forbidden to have an end tag.

Deprecated:If the tag is listed with a D, then the tag is deprecated, and you should consider using a
style sheet rule in its place.

Description: A description of the tag.

Attributes: This list includes the attributes that can be used with the element. When the element
takes the common attributes, also called core attributes, we simply say “All core attributes.” (As a
reminder, those attributes are i d,cl ass,styl e,andtitle.)

There are also language and event attributes that can be used with most elements. Likewise, when
these attributes apply to elements, we simply say “language attributes” and/or “event attributes,”
respectively. The language attributes are di r and | ang. The event attributes are oncl i ck,

ondbl cl i ck,onnbusedown,onnmouseup,onnNDUSEOVeEr ,onnobusenbve,onnmouseout ,

onkeypr ess,onkeydown, and onkeyup. See Chapter 12 for more information on what these
attributes do. If an element can only use some of these event attributes, we list them individually. If we
just say "event attributes," the element uses all of them.

Table A-1: HTML Tags

Name

‘ Ch# ‘ Empty? ‘ Deprecated | Description Attributes

a

5,13 N Anchor All core attributes,
language attributes,
event attributes,
accesskey,
charset, coords,
href, hreflang,
name, onbl ur,
onfocus, rel,
rev, shape,

t abi ndex, type

abbr 7 N

Abbreviated form
(for WWW, HTTP)

All core attributes,
language attributes,
event attributes

acronym

Indicates an
acronym

All core attributes,
language attributes,
event attributes

address

N/A

Information on
author

All core attributes,
language attributes,
event attributes

applet

N/A

Java applet

All core attributes,
align, alt,

archi ve, cl ass,
code, codebase,
hei ght, hspace,
id, nanme, object,
style, title,
vspace, width

area

Client-side image
map area

All core attributes,
language attributes,
event attributes,
accesskey, alt,
coords, href,
nohref, onbl ur,
onfocus, shape,
t abi ndex

Bold text style

All core attributes,
language attributes,
event attributes

base

N/A

Document base
URI

href, target

basefont

N/A

Base font size

color, face, id,
si ze

bdo

N/A

118N BiDi override

All core attributes,
language attributes

big

Large text style

All core attributes,
language attributes,
event attributes

blockquote

4

Long quotation

All core attributes,
language attributes,
event attributes, ci t e

body

4,7

Document body

All core attributes,
language attributes,
event attributes,

al i nk,
background, 1ink,
onl oad, onunl oad,
text, vlink

br

Forced line break

All core attributes

button

N/A

Push button

All core attributes,
language attributes,
event attributes,
accesskey,

di sabl ed, nane,
onbl ur, onfocus,
t abi ndex, type,
val ue

caption

N/A

Table caption

All core attributes,
language attributes,
event attributes

center

Usedi v
align="center"
instead

cite

Citation

All core attributes,
language attributes,
event attributes

code

Computer code
fragment

All core attributes,
language attributes,
event attributes

col

Table column

All core attributes,
language attributes,
event attributes,
align, char,
charoff, span,
valign, width

colgroup

8

Table column
group

All core attributes,
language attributes,
event attributes,
align, char,
charof f, span,
valign, width

dd

Definition
description

All core attributes,
language attributes,
event attributes

del

Deleted text

All core attributes,
language attributes,
event attributes, ci t e,
datetinme

dfn

Instance definition

All core attributes,
language attributes,
event attributes

dir

N/A

Directory list

All core attributes,
language attributes,
event attributes,
conpact

div

11

Generic language/
style container

All core attributes,
language attributes,
event attributes

dl

Definition list

All core attributes,
language attributes,
event attributes

dt

Definition term

All core attributes,
language attributes,
event attributes

em

Emphasis

All core attributes,
language attributes,
event attributes

fieldset

N/A

Form control group

All core attributes,
language attributes,
event attributes,
accesskey, align

font

Local change to
font

All core attributes,
language attributes,
face, color, size

form

10

Interactive form

All core attributes,
language attributes,
event attributes,
accept,

accept char set,
action, enctype,
net hod, nane,
onreset, onsubmt

frame

Subwindow

All core attributes,

f rameborder,

| ongdesc,

mar gi nhei ght,
mar gi nwi dt h,
name, noresize,
scrolling, src

frameset

Window
subdivision

All core attributes,
col s, onl oad,
onunl oad, rows

h1-h6

Heading 1-6

All core attributes,
language attributes,
event attributes

head

Document head

language attributes,
profile

hr

Horizontal rule

All core attributes,
language attributes,
event attributes

html

Document root
element

Language attributes

Italic text style

All core attributes,
language attributes,
event attributes

iframe

N/A

Inline subwindow

All core attributes,
align,

franebor der,
hei ght,

| ongdesc,

mar gi nhei ght,
mar gi nwi dt h,
nane,
scrolling, src,
wi dt h

img

Embedded image

All core attributes,
language attributes,
event attributes,
alt, height,

i smap,

| ongdesc, nane,
src,

usemap, w dth

input

10, 12,
15

Form control

All core attributes,
language attributes,
event attributes,
accept,
accesskey, alt,
checked,

di sabl ed, ismap,
mex| engt h, nane,
onbl ur, onchange,
onf ocus,

onsel ect,
readonly, size
src, tabindex,
type, usenap,
val ue

ins

Inserted text

All core attributes,
language attributes,
event attributes, ci t e,
datetinme

isindex

N/A

Single line prompt

All core attributes,
language attributes,
pr onpt

kbd

Text to be entered
by the user

All core attributes,
language attributes,
event attributes

label

N/A

Form field label
text

All core attributes,
language attributes,
event attributes,
accesskey,

onbl ur, onfocus

legend N/A N Fieldset legend All core attributes,
language attributes,
event attributes,
accesskey
li 4 N List item All core attributes,
language attributes,
event attributes
link 11 Y A media- All core attributes,
independent link language attributes,
event attributes,
charset, href,
hrefl ang, nedi a,
rel, rev, type
map 6 N Client-side image All core attributes,
map language attributes,
event attributes, nane
menu N/A ND Menu list All core attributes,
language attributes,
event attributes,
conpact
meta 4 Y Generic meta- Language attributes,
information http-equiv, nane,
content, schene
noframes 9 N Alternate content All core attributes,
container for non language attributes,
rendering event attributes
noscript N/A N Alternate content All core attributes,
container language attributes,
event attributes
for non
script-based
rendering
object 13 N Generic All core attributes,
embedded object language attributes,
event attributes,
archive, classid,
codebase,
codetype, data,
decl are, height,
name, standby,
t abi ndex, type,
usemap, w dth
ol 4 N Ordered list All core attributes,

language attributes,
event attributes

optgroup

N/A

Option group

All core attributes,
language attributes,
event attributes,

di sabl ed,

mul ti ple, nane,
onbl ur, onchange,
onf ocus, size,

t abi ndex

option

10

Selectable choice

All core attributes,
language attributes,
event attributes,

di sabl ed,

mul ti ple, nane,
onbl ur, onchange,
onfocus, size,

t abi ndex

Paragraph

All core attributes,
language attributes,
event attributes, al i gn

param

13

Named property
value

id, nanme, type,
val ue, val uetype

pre

Preformatted text

All core attributes,
language attributes,
event attributes, wi dt h

N/A

Shortinline
guotation

All core attributes,
language attributes,
event attributes, ci t e

Strikethrough text
style

All core attributes,
language attributes,
event attributes

samp

Sample program
output,

scripts,

and so on

All core attributes,
language attributes,
event attributes

script

12

Script statements

charset, defer,
| anguage, src,
type

select

10

Option selector

All core attributes,
language attributes,
event attributes,

di sabl ed,

mul ti ple, nane,
onbl ur, onchange,
onf ocus, size,

t abi ndex

small

Small text style

All core attributes,
language attributes,
event attributes

span

11

Generic
language/style
container

All core attributes,
language attributes,
event attributes

strike

Strikethrough text

All core attributes,
language attributes,
event attributes

strong

Strong emphasis

All core attributes,
language attributes,
event attributes

style

11

Style info

language attributes,
media, title,

type

sub

N/A

Subscript

All core attributes,
language attributes,
event attributes

sup

N/A

Superscript

All core attributes,
language attributes,
event attributes

table

Table

All core attributes,
language attributes,
event attributes,
align, border,
cel | paddi ng,
cel | spaci ng,
frame, rules,
sumary, w dth

tbody

Table body

All core attributes,
language attributes,
event attributes,
align, char,
charoff, valign

td

Table data cell

All core attributes,
language attributes,
event attributes, abbr,
align, axis,
char, charof f,

col span, headers,
rowspan, scope,
val i gn

textarea

10

Multi-line text field

All core attributes,
language attributes,
event attributes,
accesskey, cols,
di sabl ed, nane,
onbl ur, onchange,
onf ocus,

onsel ect,
readonly, rows,

t abi ndex

tfoot

Table footer

All core attributes,
language attributes,
event attributes,
align, char,
charoff, valign

th

Table header cell

All core attributes,
language attributes,
event attributes, abbr,
align, axis,
char, charoff,

col span, headers,
rowspan, scope,
val i gn

thead

Table header

All core attributes,
language attributes,
event attributes,
align, char,
charoff, valign

title

Document title

Language attributes

tr

Table row

All core attributes,
language attributes,
event attributes,
align, bgcolor,
char, charoff,
val i gn

tt

Teletype or
monospaced text

type

All core attributes,
language attributes,
event attributes

ND

Underlined text
style

All core attributes,
language attributes,
event attributes

ul

Unordered list

All core attributes,
language attributes,
event attributes

var

Instance of a
variable or
program argument

All core attributes,
language attributes,
event attributes

Appendix B: HTML Character Codes

Overview
In This Appendix
m Knowing your Latin and Greek characters
m Formatting for special punctuation
m Handling mathematical characters
m Dealing with ISO character sets

This appendix includes listings for all the character sets supported by HTML 4.0 (and consequently HTML
4.01). Use the nine tables here to find out what you have to type in order to get HTML to output characters
that aren’t part of the ASCII character set. Each table includes:

m The character
m The character’'s numeric entity
m The character’s character entity

Chapter 1 details why you might want to use any of these entities and how you use them with your
markup.

Keep in mind that we couldn’t get some characters to display correctly because of font
restrictions, so be sure to try using the entity and displaying it in your browser to see what symbol appears.

Even though everything listed here is part of the HTML 4.01 standard, not all browsers support
these characters. Even if you test your code on your favorite browser before you consider it ready for
action, such testing is no guarantee of universal usability. As a general rule, the character shortcuts are
least supported and the numeric characters are most supported.

ISO-Latin-1

ISO-Latin-1 is fully supported by all current and most older browsers. Review Table B-1 to find out what
you need to know. Check out Table B-9 in the section “More ISO Character Sets Than You Can Shake a
Stick At,” later in this appendix.

Table B-1: The ISO-Latin-1 Character Set

‘ Character/Description ‘ Numeric Entity ‘ Character Entity

‘ Em space, not collapsed ‘ None ‘ &emnsp;

‘ En space ‘ None ‘  

‘ Em space ‘ � - ‘

‘ Horizontal tab ‘ 	 ‘

‘ Line feed or new line ‘
 ‘

‘ Unused ‘ - , ‘

‘ Space ‘ ‘

\ ! \ ! \

‘ ‘ ", ‘ "

\ # \ # \

\ $ \ $ \

‘ % ‘ % ‘

\ & \ & \ &anp

‘ ' (Apostrophe) ‘ ' ‘

I &40, |

) &l |

* ‘ *,; ‘

‘ + ‘ + ‘

‘ , (Comma) ‘ ,, ‘

‘ — (Minus sign) ‘ - ‘

. (Period) a#as; |

‘ / ‘ &H#4T, ‘

0-9 (Numerals, where 0 - T, None 0 is 0 , 1 is 1 , and
SO 0n)

\ \ : \

\ \ ; \

‘ < ‘ <, ‘ <

- 61, |

‘ > ‘ > ‘ > ;

K 8#63; |

\@) \@ \

A-Z (Capitals, where A - Z None A is A , B is B ,
and so on)

I a1, |

‘ \ ‘ \ ‘

]] |

” 8#94; |

‘ _(Underscore) ‘ _ ‘

‘ " (Grave accent) ‘ ` ‘

a-z (Lowercase, where &H#H97; - z None a is a , b is &498; , and
S0 on)

\{ \{ \

\| \| \

\} \} \

- 8#126; |

‘Unused ‘ - Ÿ ‘

‘Nonbreamngspace ‘ ‘

‘i ‘¡ ‘¡

‘¢ ‘¢ ‘¢

‘E ‘£ ‘£

‘€ ‘¤ ‘&currem

‘¥ ‘¥ ‘&yem

‘» ‘¦ ‘&brvbau

\§ \§ \§

‘" ‘¨ ‘&um;

‘@ ‘© ‘©

a ‘ª ‘ª

‘« ‘« ‘&Iaquo;

‘ﬂ ‘¬ ‘¬

‘—(Soﬁhyphen) ‘­ ‘­

‘® ‘® ‘®

‘_ ‘¯ ‘&nacr;

‘° ‘° ‘°

‘t ‘± ‘&plusnn;

2 \² \&supz

3

‘³ ‘&supS;

(Acute accent) ‘ ´ ‘ &acut e;

‘,

‘u ‘µ ‘&m’ cro;
‘ f ‘ 8#182; ‘ &par a;

I a#183; & ddot ;
‘ , (Cedilla) ‘ ¸ ‘ ¸ ;
E 8#185; ‘&supl;

° ‘º ‘º

» ‘» ‘&r aguo;

‘ 1/4 ‘ ¼ ‘ &f racl4;
‘ 1/2 ‘ ½ ‘ &fraciz,
\ 3/4 \ ¾ \ &f rac34;
. #191; & quest :
‘A ‘À ‘À
‘A ‘Á ‘Á
‘A ‘Â ‘&Aci rc;

A \Ã \&Ati | de;
‘A ‘Ä ‘&Aum ;
A Å &Ari ng;
‘/E ‘Æ ‘&AEI i g;
‘C \Ç \&cCedi l;
‘ E ‘ È ‘ &Egr ave;
\ E \ É \ &Eacut e;
‘E ‘Ê ‘&Eci rc;

‘ E ‘ 8#203; ‘ &Eum ;

‘ I ‘ Ì ‘ &l grave;
‘I’ ‘Í ‘&I acut e;
‘T ‘Î ‘&Ici rc;
"I' \Ï \&l um ;

‘ a ‘ Ð ‘ Ð

N 8#209; et | de;
‘ ¢ ‘ Ò ‘ &0Ogr ave;
‘C’) ‘Ó ‘Ó
0 Ô eccirc:
0 \Õ \&Oti | de;
L a#214; gount ;

‘x ‘× ‘&ti nes;

‘G \Ø \&csl ash;
‘ U ‘ Ù, ‘ &Ugr ave;
‘U ‘Ú ‘Ú
0 8#219; &l rc;

‘ V] ‘ Ü ‘ &Uum ;
Y a#221; “avacute;
‘ I ‘ Þ ‘ Þ,;

‘ B3 \ß ‘&szl ig;

‘ a ‘ à, ‘ gagr ave;
‘ a ‘ á ‘ &aacut e;
4 â eacirc:
3 227 eati| de:
‘é ‘ä ‘&aum ;

‘ a ‘ å ‘ å
= æ eaelig:

‘ ¢ ‘ ç ‘ ç ;
‘ e ‘ 8#232; ‘ &egr ave;
‘ é ‘ é,; ‘ &eacut e;
e a#234; gecirc:
‘é ‘ë ‘&eum ;

‘ i ‘ ì ‘ & grave;
i í ‘& acute:
‘T ‘î ‘&i circ;

‘ i ‘ ï ‘ & um ;

‘ b \ ð \ &et h;

i ‘ ñ, ‘ &nti | de;
‘ 0 ‘ ò ‘ &ogr ave;
‘ 6 ‘ ó,; ‘ &oacut e;
‘6 ‘ô ‘&oci rc,;
0 ‘ õ ‘ &oti | de;
‘ 0 ‘ ö ‘ &oum ;

‘ + ‘ ÷, ‘ &di vi de;
‘Q’ ‘ø: ‘&osl ash;
‘ u ‘ ù ‘ &ugr ave;
‘ u ‘ ú ‘ &uacut e;
a û aucirc:

‘ u ‘ ü ‘ &uunt ;

‘ y ‘ ý,; ‘ &yacut e;
‘ | ‘ þ, ‘ & horn;
g ÿ gyunt ;

Greek Characters

If you have a need to use Greek characters, Table B-2 gives you everything you need to know.

Table B-2: Greek Characters

‘ Character ‘ Numeric Entity ‘ Character Entity

‘ A ‘ Α ‘ &Al pha;

‘ B ‘ Β, ‘ &Bet a;

‘ G ‘ Γ ‘ &Gammg;

‘ D ‘ Δ ‘ &Del t a;

‘ E ‘ Ε, ‘ &Epsi | on;
‘ z ‘ Ζ ‘ &Zet a,

\ H \ Η \ &Et a;

‘ Q ‘ Θ ‘ &Thet a;

‘ | ‘ Ι ‘ &l ot a;

‘ K ‘ Κ ‘ Κ

‘ L ‘ Λ ‘ &Larbda,

\ M \ Μ \ Μ

‘ N ‘ Ν ‘ Ν

\x \Ξ \&Xi ;

‘O ‘Ο ‘&Oﬂ' cron;
P 84928, &P

‘ R ‘ Ρ ‘ Ρ

‘ S ‘ 8Σ, ‘ &Si gm;

‘ T ‘ Τ ‘ Τ

‘ U ‘ Υ ‘ &Upsi | on;
F 8#934; &Phi ;

\c \Χ \&Chi ;

‘ Y ‘ Ψ ‘ &Psi ;

‘ w ‘ Ω,; ‘ &0Orega;

‘ a ‘ α ‘ &al pha;

‘ b ‘ 8#946; ‘ &bet a;

‘ g ‘ γ, ‘ &ganma;

‘ d ‘ δ ‘ &del t a;

‘ e ‘ ε ‘ &epsil on;
‘ z ‘ ζ ‘ &zet a,

‘ h ‘ η ‘ &et a;

‘q ‘θ ‘&t het a;

‘ i ‘ ι ‘ &i ot a;

‘ k ‘ κ ‘ κ

\ | \ λ \ &l anbda;
'm 8#956; μ

‘ n ‘ ν ‘ ν

‘ X ‘ ξ,; ‘ &xi ;

‘o ‘ο ‘&om’ cron,
T #960; &pi ;

L ρ erho:

‘V ‘ς ‘&si gmaf ;
‘s ‘σ ‘&si gna;

‘ t ‘ τ ‘ &t au;

u υ gupsi | on;
‘ f ‘ φ ‘ &phi ;

‘C ‘χ ‘&chi ;

y #968; &psi ;

‘w ‘ω ‘&on”ega;

‘ q ‘ &HITT; ‘ & het asym
“’ \ϒ \&upsi h;
D ϖ epi v;

Special Punctuation
Use the information in Table B-3 to help format bullets, horizontal ellipsis, and other special punctuation.

Table B-3: Special Punctuation

‘ Character ‘ Numeric Entity ‘ Character Entity
. ‘• ‘ &bul | ;

‘ e ‘… ‘ &hel | i p;

' ‘ ′,; ‘ &pri me;

" ‘ ″ ‘ &Pri ne,;

‘— ‘‾ ‘ &ol i ne;

‘/ ‘⁄ ‘&frasl ;

Characters That Could Be Letters

Maybe in a parallel universe, these characters might be letters. We're not sure why you’d need to use
these characters, but they are laid out for you in Table B-4.

Table B-4: Letter-like Characters

‘ Character ‘ Numeric Entity ‘ Character Entity

‘ ‘ ℘ ‘ &wei er p;

‘ i ‘ 8#8465; ‘ & mage;

‘ = ‘ ℜ ‘ &real ;
™ ‘ ™, ‘ &t r ade,

. ℵ gal ef sym

Characters That Point

We never really knew how many ways you can make an arrow until we learned HTML. Now we pass on
this wisdom to you in Table B-5.

Table B-5: Arrow Characters

‘ Character ‘ Numeric Entity ‘ Character Entity
‘ ; ‘ ← ‘ &l arr;

‘ ‘ ↑ ‘ &uarr ;
‘AE ‘→ ‘&r arr,

‘ %) ‘ ↓ ‘ &darr ;

‘ ’ ‘ ↔, ‘ ↔
‘g ‘↵ ‘↵
‘ ‘ ⇐ ‘ &l Arr;

‘ ‘ ⇑, ‘ &UArT ;

‘ ‘⇒ ‘⇒

‘ ‘ ⇓ ‘ ⇓

‘ ‘ ⇔,; ‘ ⇔

Heavy-Duty Mathematical Characters

Get out your pocket protector. If you're in a technical or scientific field, the charactersin Table B-6 might
be right up your subset.

Table B-6: Mathematical Characters

‘ Character ‘ Numeric Entity ‘ Character Entity
‘ " ‘ ∀ ‘ ∀
‘ ‘ ∂ ‘ ∂

‘ $ ‘ ∃ ‘ &exi st
‘ ‘ ∅ ‘ &enpt y,
‘ D ‘ ∇ ‘&nabl a,
‘ ‘ ∈ ‘ & sin;

‘ ‘ ∉ ‘ ¬i n;
‘ ‘ ∋ ‘ &ni ;

» ∏ &pr od;
‘S ‘∑ ‘&sum

‘ ‘ − ‘ &ni nus;
* ‘ &#H8727; ‘ &l owast ;
‘ ‘ √ ‘ &r adi c;
‘ vl ‘ ∝ ‘ &pr op;

‘ 8 ‘ ∞ ‘ & nfin;
‘ ‘ ∠ ‘ ∠

‘ ‘ ࢳ, ‘ ∧

‘ ‘ ࢴ,; ‘ &or,

» \ ∪ \ &aup;

\ \ &HBTAT; \ ∫

‘ \ ‘ ∴ ‘ &there4,;
‘ ~ ‘ ∼ ‘ ∼

‘ @ ‘ ≅,; ‘ ≅

‘ B ‘ ≈ ‘ ≈
‘ ‘ ≠ ‘ ≠

‘ + ‘ ≡,; ‘ ≡

‘ = ‘ ≤ ‘ ≤

‘ = ‘ ≥ ‘ ≥

A ‘ ⊂ ‘ ⊂

‘ ‘ ⊃ ‘ ⊃

\ ⊄

‘ ⊄

A

0 \ ⊆ \ ⊆
‘ ‘ ⊇ ‘ ⊇
‘ ‘ ⊕ ‘ ⊕
‘ ‘ ⊗ ‘ ⊗
‘ n ‘ ⊥ ‘ ⊥
‘ ‘ ⋅,; ‘ &sdot ;

Technical Characters

The technical characters in Table B-7 are funky-looking brackets. Do with them what you will, and rest
easy knowing that they exist.

Table B-7: Technical Characters

‘ Character ‘ Numeric Entity ‘ Character Entity
‘ E ‘⌈ ‘ & ceil;
‘ ¢ ‘ ⌉ ‘ ⌉

I ‘ ⌊ ‘ & f1loor;

‘ ‘⌋ ‘&rfl oor;

‘ ‘ 〈 ‘ &l ang;

0 ‘〉 ‘&r ang;

Hearts, Spades, Clubs, and Diamonds

Card fiend? Check out Table B-8.

Table B-8: Playing Card Symbols

‘ Character ‘ Numeric Entity ‘ Character Entity
‘♠ ‘♠

I ♣ &cl ubs;

© ♥ ghearts;

‘ ® ‘ ♦ ‘ &di ans;

More ISO Character Sets Than You Can Shake a Stick At

Not that you would shake a stick at anything. Ever. Who shakes sticks? Anyway, in addition to the various
characters shown in this appendix, numerous variants of the ISO-Latin character set have been created,
primarily to support developers (and users) who want to read Web pages in languages other than English.
AsTable B-9 shows, there are 10 named versions of the ISO-Latin character sets, and 15 versions of ISO-
Latin itself, each of which is aimed at a separate collection of languages. If you want to service readersin

languages other than English, these character sets will be important to you.

Table B-9: ISO 8859 Character Sets

Character Set

Script

Languages

ISO-8859-1

Latin-1

ASCII plus most Western
European languages,
including Albanian, Afrikaans,
Basque, Catalan, Danish,
Dutch, English, Faroese,
Finnish, Flemish, Galician,
German, Icelandic, Irish,
ltalian, Norwegian,
Portuguese, Scottish,
Spanish, and Swedish. Omits
certain Dutch, French, and
German characters.

ISO-8859-2

Latin-2

ASCII plus most Central
European languages,
including Czech, English,
German, Hungarian, Polish,
Romanian, Croatian, Slovak,
Slovene, and Serbian.

ISO-8859-3

Latin-3

ASCII plus characters
required for English,
Esperanto, German, Maltese,
and Galician.

ISO-8859-4

Latin-4

ASCII plus most Baltic
languages, including Latvian,
Lithuanian, German,
Greenlandic, and Lappish;
now superseded by ISO-
Latin-6.

ISO-8859-5

ASCII plus Cyrillic characters
for Slavic languages,
including Byelorussian,
Bulgarian, Macedonian,
Russian, Serbian, and
Ukrainian.

‘ ISO-8859-6

‘ ASCII plus Arabic characters.

\ ISO-8859-7

‘ ASCII plus Greek characters.

\ ISO-8859-8

‘ ASCII plus Hebrew.

ISO-8859-9

Latin-5

Latin-1 except that some
Turkish symbols replace
Icelandic ones.

ISO-8859-10

Latin-6

ASCII plus most Nordic
languages, including Latvian,
Lithuanian, Inuit, non-Skolt
Sami, and Icelandic.

‘ ISO-8859-11

‘ ASCII plus Thai.

‘ ISO-8859-12

‘ Latin-7

‘ ASCII plus Celtic.

ISO-8859-13

Latin-8

ASCII plus the Baltic Rim
characters.

\ ISO-8859-14

‘ Latin-9

‘ ASCII plus Sami (Finnish).

ISO-8859-15

Latin-10

Variation on Latin-1 that
includes Euro currency sign,
plus extra accented Finnish
and French characters.

Appendix C: Glossary

A

absolute

anchor

animation

attribute

When used to modify pathnames or URLSs, a full and complete file specification (as opposed
to a relative one). An absolute specification includes a host identifier, a complete volume, and
path specification.

In HTML, an anchor is tagged text or a graphic element that acts as a link to another location
inside or outside a given document, or an anchor may be a location in a document that acts
as the destination for an incoming link. The latter definition is most commonly how we use it in
this book.

A computerized process of creating moving images by rapidly advancing from one still image
to the next. In HTML, animated GIFs are typically used to produce this effect.

A named characteristic associated with a specific HTML element. Some attributes are
required, and others are optional. Some attributes also take values (if so, the syntax is
attri bute="val ue"), depending on the particular element and attribute involved.

B

bandwidth

Technically, the range of electrical frequencies a device can handle; more often, bandwidth is
used as a measure of a communication technology’s carrying capacity. The more bandwidth
users have on their machines, the more quickly they can access HT ML files.

beta testing
When you and a limited group of users test your Web site before you share it with the rest of

the world.

bookmark
A reference from a saved list of URLs kept by the Netscape Web browser. Bookmarks allow
quick loading of a Web site without retyping the URL. Bookmarks are also known as Favorites
in Microsoft Internet Explorer.

browser
A Web access program that can request HT ML documents from Web servers and render
such documents on a user’s display device. See also client.

bugs

Issues that sometimes show up in software in the form of major or minor errors, mistakes, and
gotchas. Bugs got their name from insects found in antiquated tube-based computers of the
late 1950s and early 1960s that were attracted to the glow of the filament in a tube. Bugs that
show up in HTML markup can mess up a visitor’s attempt to navigate your site.

C

CGI (Common Gateway Interface)

The specification that governs how Web browsers communicate with and request services
from Web servers; also the format and syntax for passing information from browsers to
servers via HT ML forms or document-based queries.

client

The end-user side of the client/server arrangement; typically, client refers to a consumer
(rather than a provider) of network services; a Web browser is therefore a client program that
talks to Web servers.

client-side image map
The same as a server-side image map, except that the hot-spot definitions are stored within
the HT ML document on the client side, rather than in a map file stored on the server.

content

The raison d’étre for HTML; although form is important, content is why users access Web
documents and why they come back for more.

CSS (Cascading Style Sheets)
A method of markup that allows users to define how certain HTML, XHTML, or XML structural
elements, such as paragraphs and headings, should be displayed using style rules instead of
additional markup. The versions of CSS are CSS1 and CSS2. CSS2 is the most recent
completed version, and CSS3 is underway.

D

default
In general computer-speak, a selection made automatically in a program if the user specifies
no explicit selection. For HTML, the default is the value assigned to an attribute if none is
supplied.

deprecated

The term used to earmark an HTML element or attribute that is to be left for dead by future
versions of HTML.

DOCTYPE declaration

HTML markup that tells the processor where to locate the DTD and contains declarations for
the particular document. Also called a document type declaration.

document

The basic unit of HTML information; a document refers to the entire contents of any single
HTML file. Because this definition doesn’t always correspond to normal notions of a
document, we refer to what can formally be called HTML documents more or less
interchangeably with Web pages, which is how browsers render such documents for display.

DTD (Document Type Definition)

A formal SGML specification for a document. A DTD lays out the structural elements and
markup definitions to be used to create instances of documents.

E

element
A section of a document defined by a start and end tag or an empty tag.

e-mail
An abbreviation for electronic mail; e-mail is the preferred method for exchanging information
between users on the Internet (and other networked systems).

empty tag
An HTML element that does not require the use of a closing tag. In fact, the use of a closing
tag in empty tags is forbidden.

entity

A character string that represents another string of characters.

error message

Information delivered by a program to a user, usually to inform him or her that the process
hasn't worked properly, if at all. Error messages are an ill-appreciated art form and contain
some of the funniest and most opaque language we’ve ever seen (also, the most tragic for
their unfortunate recipients).

event

A user activity, such as moving a mouse pointer over an image, clicking a link, or selecting a
drop-down menu.

external style sheet
A style sheet that resides outside a Web document in a separate, external file.

F

footer

The concluding part of an HTML document, containing contact, version, date, and attribution
information to help identify a document and its authors. Most people use the <addr ess>

element to identify this information.

form handler
A program on the Web server or even possibly a simple mai | t o URL that manages the data
a user sends to you via the form.

forms

HTML markup that lets browsers solicit data from users and then deliver that data to specially
designated input-handling programs on a Web server. Briefly, forms provide a mechanism to
let users interact with servers on the Web.

FTP (File Transfer Protocol)

An Internet file transfer service based on the TCP/IP protocols that provides a way to copy
files to and from FTP servers elsewhere on a network.

G

GIF (Graphic Interchange Format)

A graphics format commonly used in Web documents because of its relatively small file size
and relatively sharp resolution.

graphics
Files in HTML documents that belong to one of a restricted family of types (usually .GIF or
.JPG). Graphics are referenced via URLSs for inline display on Web pages.

GUI (Graphical User Interface)

Pronounced “gooey,” GUIs make graphical Web browsers possible; they create a visually
oriented interface that makes it easy for users to interact with computerized information of all
kinds.

H

heading

A markup element used to add document structure to HT ML documents. Sometimes the term
refersto the initial portion of an HTML document between the <head> . . . </ head>

tags, where titles and context definitions are commonly supplied.

helper applications

Applications that help a browser deliver Web information to users. Although recent browsers
can display multiple graphics files (and sometimes other kinds of data), sometimes they must
pass certain files — for instance, motion picture or sound files — over to other applications
that know how to render the data they contain.

hexadecimal

A numbering system used to condense binary numbers. The hexadecimal system is
composed of six letters and ten numbers. In HT ML, hexadecimal numbering is used with
elements and their attributes to denote what colors should comprise backgrounds and other
elements in a Web page.

HTML (Hypertext Markup Language)

The SGML-derived markup language used to create Web pages. Not quite a programming
language, HT ML nevertheless provides a rich lexicon and syntax for designing and creating
useful hypertext documents for the Web.

HTTP (Hypertext Transfer Protocol)
The Internet protocol used to manage communication between Web clients (browsers) and

servers.
hyperlink
A shorthand term for hypertext link, a block of text that a user can activate with a mouse click
to navigate to another Web page.
hypermedia
Any of a variety of computer media — including text, graphics, video, sound, and so on —
available through hypertext links on the Web.
hypertext

A method of organizing text, graphics, and other kinds of data for computer use that lets
individual data elements point to one another; a nonlinear method of organizing information,
especially text.

image map

A synonym for clickable image, an overlaid collection of pixel coordinates for a graphic that a
user can select to activate a related hypertext link for further Web navigation.

inline content
A word or string of words inside a block element.

inline element

Any element that controls presentation on an element-by-element basis, and an inline
element does not denote structure. In other words, it's a text element, for example the
elementis an inline element.

internal style sheet

A style sheet that resides inside the Web document in which you're working and controls how
its information appears on-screen.

Internet

A worldwide collection of networks that began with technology and equipment funded by the
U.S. Department of Defense in the 1970s. The World Wide Web is just a portion of the
Internet. Today, it links users in nearly every country, speaking nearly every known language.

ISP (Internet Service Provider)

An organization that provides individuals or other organizations with access to the Internet,
usually for a fee. ISPs usually offer a variety of communications options for their customers,
ranging from analog telephone lines, to a variety of higher-bandwidth leased lines, to ISDN
and other digital communications services.

Java

An object-oriented, platform-independent, secure, and compact programming language
designed for Web application deployment. Most system vendors support Java, which was
created by Sun Microsystems.

JPEG (or JPG)

Joint Photographic Experts’ Group; an industry association that defined a highly compressible
format for images designed for complex color still images (such as photographs). JPEG files

take the extension .JPG or .JPEG. Today, .JPG is one graphics format of choice for Web use,
particularly for complex or photographic images.

layout

link

Lynx

The overall arrangement of the elements in a document.

Also called a hyperlink. A pointer in one part of an HTML document that can transport users
to another part of the same document, or to another document entirely. This capability puts
thehyper into hypertext. In other words, a link is a one-to-one relationship/association
between two concepts or ideas.

A widely used text-based Web browser, useful for checking a Web page before going live with
it (or using a Web server to host the page on the Web).

M

maintenance

The process of regularly inspecting, testing, and updating the contents of Web pages; also, an
attitude that such activities are both inevitable and advisable.

mark up

To embed special characters (metacharacters) within a text file to tell a computer program
how to handle the file’s contents.

markup language

A formal set of special characters and related capabilities used to define a specific method for
handling the display of files that include markup; HTML is a markup language used to design
and create Web pages.

metadata

Specially defined elements that describe a document's structure, content, or rendering within
the document itself or through external references. (Metadata literally means data about
data.)

multimedia

A method of combining text, sound, graphics, and full-motion or animated video within a single
compound computer document.

N

nameservers
Computers on the Internet that translate domain hames into the actual Internet location for
your computer’'s browser.

navigation
Refers to the use of hyperlinks to move within or between HTML documents and other Web-
accessible resources.

navigation bar

An element on a Web page that arranges a series of hypertext links on a single line to provide
a set of navigation controls to help users move through an HTML document or a set of HTML
documents.

nesting
One structure that occurs within another; in HTML, nesting happens most commonly with list
structures that may be freely nested within one another, regardless of type.

O

online

A term that indicates information, activity, or communications located on or taking place in, an
electronic, networked computing environment (such as the Internet).

operating system

The underlying control program on a computer that makes the hardware run and supports the
execution of one or more applications. DOS, Windows, Unix, and OS/2 are all examples of
operating systems.

P

page
The generic term for an HTML document that Web users view on their browsers.

PDF (Portable Document Format)

The rich, typographically correct document format of Adobe, used to provide multiplatform
document access through its Acrobat software as a more powerful alternative to HTML.

plug-in
Hardware or software added to a system that adds a specific feature such as plug-ins that
allow Netscape Navigator to play video.

properties
In CSS, they are the different aspects of the display of text and graphics, such as font size or
background color.

R

relative address

resource

robot

An abbreviated document address that may be combined with the <base> element to create
a complete address or is the complete address for a local file found in the same directory.

Any HTML document, capability, or other item or service available via the Web. URLSs point to
resources.

A special Web-traveling program that wanders widely, following and recording URLs and
related titles for future reference in search engines. Also called a spider.

S

script
A set of programming instructions that activate when an event that you define occurs.

scripting language
A special kind of programming language that a computer reads and executes at the same
time (which means that the computer figures out what to do with the language when it
appears in a document or at the time that it's used. JavaScript is a common scripting
language associated with Web use).

search engine

A Web-based application that searches the contents of a database of available Web pages
and other resources to provide information that relates to specific topics or keywords, which a
user supplies.

search tools

Any of a number of programs that can permit HTML documents to become searchable, using
the<i si ndex> element to inform the browser of the need for a search window, and behind-

the-scenes indexing and anchoring schemes to let users locate particular sections of or items
within a document.

selector
In CSS, identifies the element to which a style rule applies.

SGML (Standard Generalized Markup Language)

An ISO standard document definition, specification, and creation mechanism that makes
platform and display differences across multiple computers irrelevant to the delivery and
rendering of documents.

shareware

Software, available by various means, that users can run for free for a trial period. After that
trial period expires, users must register and purchase the software, or they must discontinue
its use.

specification
A formal document that describes the capabilities, functions, and interfaces for a specific
piece of software, a markup language, or acommunications protocol.

spider
A Web-traversing program that tirelessly investigates Web pages and their links, while storing
information about its travels for inclusion in the databases typically used by search engines.
Also called Web spider, Webcrawler,search bot, and robot.
style sheet
A file that holds the layout settings for a certain category of a document. Style sheets, like
templates, contain settings for headers and footers, tabs, margins, fonts, columns, and more.
syntax

The rules that govern how HTML markup looks and behaves within HTML documents. The
real syntax definition for HTML comes from the SGML Document Type Definition (DTD).
Markup written with the correct syntax is likelier to run well.

syntax checker

A program that checks a particular HTML document's markup against the rules that govern its
use; a recommended part of the testing regimen for all HTML documents.

tag

template

test plan

thumbnail

title

The formal name for a piece of HT ML markup that signals a command of sorts (instructions),
usually enclosed in angle brackets (< >).

Literally, a model to imitate. In HTML terms, a template describes the skeleton of a Web
page, including the HT ML for its heading and footer, and a consistent layout, and a set of
navigation elements.

The series of steps and elements to follow when conducting a formal test of software or other
computerized systems; we strongly recommend that you write - and use - a test plan as a part
of your Web-publication process.

A miniature rendering of a graphical image, used as a link to the full-size version.

The text supplied to a Web page's title bar when displayed, used as data in many Web search
engines.

Unix
The operating system of choice for the Internet community at large and the Web community,
too, Unix offers the broadest range of tools, utilities, and programming libraries for Web server
use.

URL (Uniform Resource Locator)

The primary naming scheme used to identify Web resources. URLs define the protocols to
use, the domain name of the Web server where a resource resides, the port address to use
for communication, and a directory path to access named Web files or resources.

URL-encoded text

Text encoded specifically for the purpose of passing information requests and URL
specifications to Web servers from browsers. URL encoding replaces spaces with plus signs
(+) and substitutes special hexadecimal codes for a range of otherwise-irreproducible
characters. This method is used to pass document queries from browsers to servers.

user interface

The overall design of your site, including the way it looks, fits together, and works to provide
accessto information. Abbreviated as Ul. See also GUI.

valid

Markup that follows all the syntax rules defined in a DTD, allowing the document to pass
through a validator program with no errors.

validation
The process of comparing a document to a set of document rules, in this context a DTD.

Web
Also called the World Wide Web, WWW, or W3. The complete collection of all Web servers
available on the Internet, which comes as close to containing the “sum of human knowledge”
as anything we've yet seen.

Web page
Synonym for an HTML document. In this book, we refer to Web pages as sets of related,
interlinked HTML documents, usually produced by a single author or organization.

Web server
A computer, usually on the Internet, that hosts HTTP protocols and related Web-service
software. See also Web-hosting provider.

Web site

An addressed location, usually on the Internet, that provides access to the set of Web pages
that correspond to the URL for a given site. A Web site consists of a Web server and a named
collection of Web documents, both accessible through a single Web address. See also URL.

Web-hosting provider

A company that provides space on Web servers for individuals or companies to host Web
sites. See also ISP.

well-formed document
An HTML document that adheres to the rules that make it easy for a computer to interpret.

white space

The breathing room on a page — parts of a display or document unoccupied by text or other
visual elements. A certain amount of white space is essential to make documents attractive
and readable.

WYSIWYG (What You See Is What You Get)

A term used to describe text editors or other layout tools (such as HTML authoring tools) that
attempt to show on-screen what final, finished documents will look like.

X

XHTML (Extensible Hypertext Markup Language)
The reformulation of HTML 4.0 as an application of XML 1.0.

XML (Extensible Markup Language)

A system for defining, validating, and sharing document formats. Its main difference from
HTML is that you can create your own elements.

Index

A

<a> element, 352
attributes, 352
audio/video links, 237-238
basic links, 81-82
t ar get attribute, 177-178

abbr attribute
<t d> element, 359
<t h> element, 359

<abbr > element, 128,352

abbreviations,128
absolute, 375

absolute links, 83-84
accent marks, 20,22-24

accept attribute
<f or n> element, 354
<i nput > element, 355

accept char set attribute, 354
Access (Microsoft), 250-251

accessibility
alternative text for images, 100-102
Bobby utility, 321
checklist for making an accessible site, 321
frames, 161,163,166
resources available, 344-345
text-only Web browsers, 16
Web Accessibility Guidelines, 321
Web Accessibility Initiative (WAI), 102

accesskey attribute
<a> element, 352
<ar ea> element, 352
<but t on> element, 353
<fi el dset > element, 354
<i nput > element, 355
<| abel > element, 356
<l egend> element, 356
<t ext ar ea> element, 359

<acr onyn® element, 128,352
acronyms, 128

act i on attribute, 186-187,354
<addr ess> element, 352

Adobe
Golive,217,281-282
Photoshop,282-283

AIFF (Audio Interchange File Format), 233
al i gn attribute

<appl et > element, 352
<capti on> element, 144
<col > element, 353

<col gr oup> element, 353
<fi el dset > element, 354
<hr > element, 69

<i f rame> element, 355

<i ng> element, 105-106
<p> element, 61,357

<t abl e> element, 150-151
<t body> element, 359

<t d> element, 151,359

<t f oot > element, 359

<t h> element, 359

<t head> element, 359

<tr> element, 151,360

alignment
horizontal rule, 69
images,105-106
paragraphs,61
table captions, 144
table cells, 151-152
table rows, 151-152

tables,150-152
al i nk attribute, 119,353

al t attribute
<appl et > element, 352
<ar ea> element, 109,352
<i ng> element, 100,355
<i nput > element, 355

alternative text, 100-102

Amazon.com Web site, 322-323

anchor,375

anchor element, 81-82.See also<a> element

animation,375
animated GIFs, 111-112
Flash,235

Apple QuickTime Web site, 237
<appl et > element, 352

ar chi ve attribute
<appl et > element, 352
<obj ect > element, 357

<ar ea> element, 109,352

arrow character set, 370-371

ASP.NET,255-256

ASP.NET For Dummies, Bill Haffield, 257

attributes (HTML markup), 20-22,375.See alsoindividual attributes by name

audio
AIFF (Audio Interchange File Format), 233
AU (Sun/NeXT audio), 233
background music, 242

embedding files into Web pages, 239-241
links,237-239

MIDI (Musical Instrument Digital Interface), 233
MP3 (MPEG-1, Layer Ill), 233

QT (QuickTime), 233

RA (RealAudio), 233

RMF (Rich Music Format), 233-234
streaming audio, 242-244

SWA (Shockwave Audio), 234

SWEF (Flash), 234

WAV (RIFF WAVE), 234

WMA (Windows Media Audio), 234

AVI (audio/video interleaved) video format, 234

axi s attribute
<t d> element, 359
<t h> element, 359

Index

B
 element, 128,352

background (of Web page)
Cascading Style Sheets (CSS), 205
colors,120
images,121-122
music,242

backgr ound attribute, 121-122,353
bandwidth,375

<base> element, 352

<basef ont > element, 352
BBEdit,275,280

<bdo> element, 352

beta testing, 330,375

bgcol or attribute
<body> element, 120,122
<t d> element, 159-160
<t r > element, 360

<bgsound> element, 242
<bi g> element, 128,352
<bl ock> element, 59

block quotes, 63—64
<bl ockquot e> element, 63-66,353

blocks of text, 60
Bobby utility for scanning Web site accessibility, 321,353

<body> element
al i nk attribute, 119
attributes, 353
backgr ound attribute, 121-122
bgcol or attribute, 120,122
content and markup, 58-59,118
| i nk attribute, 119
t ext attribute, 118
vl i nk attribute, 119

boldfacing text, 128
bookmark,375
bor der attribute

<i ng> element, 104-105
<t abl e> element, 143,145

borders
Cascading Style Sheets (CSS), 206
frames,173-175
images,104-105
tables, 138,143,145

 element, 67-68,353

Bravenet Web site, 347

broken links
common causes of, 84-85
finding,304,329
link checkers, 284-285,329

browsers,375
alternative text, 100-102
Cascading Style Sheets (CSS), 159,207—208
character set support, 361
client-side scripts, 223
color settings, 119
colors,116
display instructions, 12—-13
frames, 161,166
graphical browsers, 16
Hypertext Transfer Protocol (HTTP), 17
image display, 100
interpretation of HTML, 15-16
line breaks, 67
Lynx,ﬁ,ﬂ
opening a new window, 86—87
page title display, 54
plug-ins,236
redirecting users, 56-57
scripting languages, 224
streaming media, 242243
style sheets, 159,203,207-208
testing,16,337,339
text-only browsers, 16
viewing Web pages, 42—-43
white space, 64-65
XHTML,260,263
XML (Extensible Markup Language), 260

bugs,376.See alsoerrors
Builder.com Web site, 96,257
bullet styles, 75—76

bulleted lists, 74—76

<but t on> element, 353

Index

C

<capti on> element, 144,353

captions in tables, 144
card character set, 373

Cascading Style Sheets (CSS), 376
background properties, 205
border properties, 206
browser display, 207—208
browser support, 159
classification properties, 206
core style sheets, 215
CSS1,204-205
CSS2,204-205
CSS3,205
declarations,207,209
external style sheet, 213-215,377
font properties, 206
inheritance,211-212
internal style sheet, 213-214,379
list properties, 206
margin properties, 206
padding properties, 206
positioning properties, 206
predefined style sheets, 215
properties,207
properties, defined, 381
selector,381
selectors,207,209
size properties, 206
style classes, 209-211
style rules, 207,209
table properties, 206
tables,159
text properties, 206
validator,209
values,207
W3C,205

Cascading Style Sheets For Dummies, Damon A. Dean, 206

case-sensitivity
HTML tags, 3
URLSs,84

cel | paddi ng attribute, 148-149

cells (tables), 138
alignment,151-152
colors,159-160
creating,140-142
height,146,148
padding,148-149
populating,155-156
spacing,148-150

span,138,142-143,152-155
width, 138,146-147

cel | spaci ng attribute, 148-150

<cent er > element, 150,353

CGI (Common Gateway Interface), 376
CGI Resource Index Web site, 197

CGl scripts for handling forms, 196-197
char attribute

<col > element, 353
<col gr oup> element, 353

char attribute (continued)

<t body> element, 359
<t d> element, 359
<t f oot > element, 359
<t h> element, 359
<t head> element, 359
<t r > element, 360

character sets

arrow character set, 370-371
browser support, 361

card character set, 373

Greek character set, 36 7—369

ISO 8859 character sets, 373-374
ISO-Latin-1 character set, 362—-367
letter-like character set, 370
mathematical character set, 371-372
punctuation character set, 369
specifying with the <nmet a> element, 57
technical character set, 372-373

char of f attribute

<col > element, 353

<col gr oup> element, 353
<t body> element, 359

<t d> element, 359

<t f oot > element, 359

<t h> element, 359

<t head> element, 359

<t r > element, 360

char set attribute

<a> element, 352
<li nk> element, 356
<scri pt > element, 358

check boxes (forms), 189-190
checked attribute, 355
citations,128

ci t e attribute

<bl ockquot e> element, 353
 element, 354

<i ns> element, 355

<qg> element, 358

<ci t e> element, 128,353

cl ass attribute, 210-211,352
cl assi d attribute, 357

“click here” phrasing in links, 319
clickable images. Seeimage maps
client,376

client-side image maps, 376
client-side scripts, 223

clipart, 113

code, denoting in text, 129

code attribute, 352

<code> element, 129,353

code examples
companion Web site, 7
typing in, 2

codebase attribute
<appl et > element, 352
<obj ect > element, 357

codet ype attribute, 357
<col > element, 144,353
<col gr oup> element, 144,353

col or attribute
<basef ont > element, 352
<f ont > element, 125,127

colors
background color, 120
browser display, 116
converters (RGB notation to hexadecimal notation), 117
coordination tips, 119,122-123
defining,116,120-121
hexadecimal codes, 116-118
hexadecimal color codes, 378
links,119-120
names,116
table cells, 159-160
text color, 118,125
Web browser settings, 119

col s attribute
<franeset > element, 167-170,355
<t ext ar ea> element, 359

col span attribute
<t d> element, 142-143,152-154,359
<t h> element, 359

columns.See alsocells(tables)
frames,167-172
tables,144

Common Gateway Interface (CGI), 376

compact attribute
<di r > element, 354

<menu> element, 356

compressing images, 96-97

content,376
checking and updating, 304
frames,172-173
images,94
importance of, 335-336
inline content, 379
inline element, 379
types of, 11-12

cont ent attribute, 55,356
converting colors (RGB notation to hexadecimal notation), 117

coor ds attribute
<a> element, 352
<ar ea> element, 109,352

copyright of images, 114

core style sheets, 215
Corel WordPerfect 8.0 for Windows, 281
crawlers,307

CSS (Cascading Style Sheets), 376
background properties, 205
border properties, 206
browser display, 207—208
browser support, 159
classification properties, 206
core style sheets, 215
CSS1,204-205
CSS2,204-205
CSS3,205
declarations,207,209
external style sheet, 213-215,377
font properties, 206
inheritance,211-212
internal style sheet, 213-214,379
list properties, 206
margin properties, 206
padding properties, 206
positioning properties, 206
predefined style sheets, 215
properties,207,381
selectors,207,209,381
size properties, 206
style classes, 209-211
style rules, 207,209
table properties, 206
tables,159
text properties, 206
validator,209
values,207
W3C,205

CuteFTP,300

Index

D
dat a attribute, 357
data collection forms, 181,183-185

databases,245
ASP.NET,255-256
design guidelines, 251
drivers,256
features,249
instructions,252,254
JSP,255-256
linking to a Web page, 246-248
Microsoft Access, 250-251
Microsoft SQL Server, 251-252
MySQL,249-250
online catalogs, 247
Oracle,251-252
PHP,253-254
queries,247,252-254
SQL (Structured Query Language), 246-247
Sybase,251-252
technical support, 256-257
user interaction, 29,246
uses,245-246
Web server connections, 256

dat et i me attribute
 element, 354
<i ns> element, 355

<dd> element, 76-77
declarations (CSS), 207,209
decl ar e attribute, 357
dedicated Internet connections, 293-294
default,376

def er attribute, 358
definition lists, 76—77

 element, 129,354
deprecated,376

description of page, 54-56
DevGuru Web site, 206

<df n> element, 129,354
<di r > element, 354
Director (Macromedia), 234

di sabl ed attribute
<but t on> element, 353
<i nput > element, 355
<opt gr oup> element, 357
<opti on> element, 357

<sel ect > element, 358
<t ext ar ea> element, 359

<di v> element, 354
<dl > element, 76-77,354

Doctor HTML spell checker, 328

DOCTYPE declaration, 376
HTML,52
XML,267

document,376
footer,377
header,53
structure,51-52
title,53-54

Document Type Definition (DTD), 377
HTML 4.01 specification, 25—26
XML,262-263

domain names, 297-300
download links, 90-91

download time
images,102-103
1-second, 1K rule, 98

downloading plug-ins, 236

Dreamweaver (Macromedia), 217,274-277
drop-down lists (forms), 187,192-193
drop-down menus, 33

<dt > element, 76-77,354

DTD (Document Type Definition), 377
HTML 4.01 specification, 25—26
XML,262-263

Index

E

ECMAscript,224

editing HTML
existing Web pages, 43-45
HTML Tidy, 268
word processors, 281

editors
HTML editors, 273-278,280-282
image editors, 282—283
text editors, 12,36,272-273

elements,377.See alsospecific elements
<a>, 81-82,177-178,237-238,352
<abbr >, 128,352
<acronynp, 128,352
<addr ess>, 352
anchor,31-82
<appl et >, 352
<ar ea>, 109,352
, 128,352
<base>, 352
<basef ont >, 352
<bdo>, 352
<bgsound>, 242
<bi g>, 128,352
<bl ock>, 59
<bl ockquot e>, 63-66,353
<body>, 58-59,118-122,353

, 67-68,353
<button>, 353
<capti on>, 144,353
case-sensitivity,3
<cent er >, 150,353
<cite>, 128,353
<code>, 129,353
<col >, 144,353
<col group>, 144,353
<dd>, 76-77
, 129,354
<df n>, 129,354
<di r>, 354
<di v>, 354
<dl >, 76-77,354
<dt >, 76-77,354
<enp, 129,354
<enbed>, 239-242,244
empty!é!ﬂ
end tags, 20,336-337
<fiel dset >, 354
, 123-127
<f ornp, 186-187,354
<franme>, 173-177,354

<franeset >, 166-170,355
<head>, 53-54
<h1>,62,355

<hr >, 68-70,355

<h6>, 62,355

<ht nl >, 53,355

<i >128,355

<i frame>, 355

<i mg>98-109,111,355
inline,379

<i nput >, 187-190,194-195,355
<i ns>, 129,355

<i si ndex>, 356

<kbd>, 129,356

<l abel >,356

<l egend>,356
72-75,356

<l ink>213-215,356
<nﬁp>:w:@
<menu>,356

<met a>,55-57

<nof r anes>,166,356
<noscri pt >,357

<obj ect >,239-240,357
,72-74,357

<opt gr oup>,357
<option>,187,192-193,357
<p>,60-61,357

<par an»,357
phrase,128-131
<pre>,65-66,357

<g>,358

<s>,128,358
<sanp>,129,358

<scri pt>,221-222,358
<sel ect>,187,192-193,358
singleton tag, 98

<smal | >,128,358
,358

start tag, 20
<strike>128,358
,129,358

<styl e>213-214,358
style,128-131

style rules, 215

<sub>,358

<sup>,358

<t abl e>,140-143,145-146,148-151,358-359
tag pair, 20

<t body>,144,359

<t d>,140-143,146,148,151-154,159-160,359
<t ext ar ea>,187,193,359
<t f oot >,144,359

<t h>,144,359

<t head>,144,359
<title>54,359

<tr>,140-141,151-152,360
<tt>,128,360

<u>,128,360

,74-76,360

<var >,129,360

<en,129,354

e-mail,377
form data collection, 197
links to e-mail addresses, 91
Post Office Protocol (POP), 17
Simple Mail Transfer Protocol (SMTP), 17
spam,91
<enbed> element, 239-242,244

embedding
audio/video files into a Web page, 239-241
database instructions into a Web page, 252-254
Windows Media Player, 241-242

empty element (or tag), 21,377

enct ype attribute, 354

end tags, 20,336-337

entities (HTML markup), 20,22—24,377
error message, 377

errors,377
beta testing, 330
broken links, 84-85,284,329
404 (Obj ect Not Found error, 284
page redirectors, 330
peer reviews, 331
spelling errors, 328-329
validation of HTML, 331

events,377
attributes,220-221
scripts,219-220

expanding Web sites, 305-306,339-340

Extensible Markup Language (XML), 384
browser support, 260
defined,384
differences from HTML, 260
differences from XHTML, 260
DOCTYPE declaration, 267
Document Type Definition (DTD), 262—263
FAQ Web site, 262
how it works, 261-262
namespaces,267—268
rules,265—268
uses,261

external style sheets (CSS), 214-215,377

Index

F

f ace attribute
<basef ont > element, 352
<f ont > element, 123-124,127

feedback from users, 331-332

Fetch,289

<fi el dset > element, 354

file download links, 90-91

file formats for graphics, 95-97

file size of images, 96—98

File Transfer Protocol (FTP), 17,289,377
file transfers

via FTP, 300-301
via hosting provider's Web site, 301

file upload fields (forms), 191

FileMaker Pro 6 Bible, Steven A. Schwartz, 258
Fireworks (Macromedia), 283

FirstGov Web site, 17-18

Flash
animation,235
plug-in,235
SWF (Shockwave File Extension), 234
Flash MX Bible, Robert Reinhardt and Snow Dowd, 235

<f ont > element
col or attribute, 125,127
f ace attribute, 123-124,127
si ze attribute, 125-127

font size
absolute font sizes, 126-128
Cascading Style Sheets (CSS), 206
headings,62
relative font sizes, 126-128
setting,125-128

footer
document footer, 377
table footer, 144

<f or m> element, 354
acti on attribute, 186-187

attributes, 354
nmet hod attribute, 186

form handlers, 377
form validation, 229-230

formatting text
phrase elements, 128-131
style elements, 128-131

forms,377
check boxes, 189-190
creating,185-186
data collection forms, 181,183-185
degree of difficulty, 33
design tips, 198-199
drop-down lists, 187,192—-193
e-mail collection of data, 197
file upload fields, 191
form handlers, 186,195-197,377
hidden fields, 190-191
input controls, 187-195
password fields, 188-189
radio buttons, 189-190
reset buttons, 194-195
search forms, 181-184
structure of, 186
submit buttons, 194-195
text areas, 187,193-194
text fields, 187-188
types of, 181
usability, 198
uses,181-182
validating,229-230

404 Obj ect Not Found error, 284

<f rame> element, 354
attributes, 354
f ranebor der attribute, 173-174
mar gi nhei ght attribute, 174-175
mar gi nwi dt h attribute, 174-175
nane attribute, 177
scrol | i ng attribute, 175-176

franmebor der attribute
<f rame> element, 173-174,354
<i frame> element, 355

frames
accessibility issues, 161,163,166
borders, 173-175
browser support, 161,166
columns,167-172
combining rows and columns, 170-172
content,172-173
creating,164-165
frameset document, 165-166
height,16 7—168
HTML Frameset, 25,52
layout,164—165
links,177-179
margins,174-175
naming,177
navigation,164
nesting,179-180
rows,167-172
rules,173
scroll bars, 175-176

splitting,179-180
target frame, 177-178
usability issues, 163
uses,161-162,164
width,167-168

frameset document, 165-166

<frameset > element
attributes, 355
col s attribute, 167-170
description,355

hierarchy among other elements, 166
rows attribute, 167—-170

FrontPage (Microsoft), 277-278
FTP (File Transfer Protocol), 17,289,377
FTP clients, 289-290,300-301

Index

G

ghost sites, 341

GIF Construction Set animation software, 111
GIF (Graphics Interchange Format), 95,97,378
GifBuilder animation software, 111

GolLive (Adobe), 217,281-282

graphic file formats, 95-97

Graphical User Interface (GUI), 378

graphical Web browsers, 16

graphics,378.See alsoimages

graphics applications
Adobe Photoshop, 282283
Jasc PaintShop Pro, 283
Macromedia Fireworks, 283

Graphics Interchange Format (GIF), 95,97,378
Greek character set, 36 7—-369
GUI (Graphical User Interface), defined, 378

Index

H
<head> element, 53-54

headers
page,53
table, 144
header s attribute
<t d> element, 359
<t h> element, 359
headings,61-63,378
hei ght attribute
<appl et > element, 352
<i f rame> element, 355
<i ng> element, 102-103,355
<obj ect > element, 357
<t abl e> element, 148
<t d> element, 148

help resources, 345

helper applications, 378

hexadecimal color codes, 116-118,378
hidden fields (forms), 190-191
HomeSite,275,278-279

<h1l> element, 62,355

horizontal rule, 68-71

hosting Web sites
domain names, 297-300
free Web hosting, 295
with a hosting provider, 291,294-297
on your own, 291-294

<hr > element, 68-70,355

hr ef attribute
<a> element, 83,91,352
<ar ea> element, 109,352
<base> element, 352
<l i nk> element, 215,356

hr ef | ang attribute
<a> element, 352
<li nk> element, 356

<h6> element, 62,355

hspace attribute
<appl et > element, 352
<i ng> element, 106-107

. ht msuffix, 42
HTML,378

HTML editors
Adobe GolLive, 281-282
BBEdit,280

Corel WordPerfect 8.0 for Windows, 281
Dreamweaver (Macromedia), 274-277
FrontPage (Microsoft), 277-278
functionality to look for, 273-274

helper editors, 273

HomeSSite,278-279

Microsoft Word 97/2000 for Windows, 281
word processors, 281

WYSIWYG editors, 273

<ht m > element, 53,355
HTML elements. Seeelements

HTML forms, 377
check boxes, 189-190
creating,185-186
data collection forms, 181,183-185
degree of difficulty, 33
design tips, 198-199
drop-down lists, 187,192-193
e-mail collection of data, 197
file upload fields, 191
form handlers, 186,195-197,377
hidden fields, 190-191
input controls, 187-195
password fields, 188-189
radio buttons, 189-190
reset buttons, 194-195
search forms, 181-184
structure of, 186
submit buttons, 194-195
text areas, 187,193-194
text fields, 187-188
types of, 181
usability,198
uses,181-182
validating,229-230

HTML 4.01 specification, 25-26
HTML Frameset, 25,52

HTML Goodies Web site, 348
HTML help Web site, 345

HTML markup, 380
attributes,20-22
browser interpretation, 15-16
DOCTYPE declaration, 52
document structure, 51-53
elements,20-21
entities,20,22-24,377
examples,13-14
help resources, 345
limitations,204,259
testing on browsers, 16
tips for entering, 157
validating,286-289,331,337

HTML page, 380

HTML Strict, 25,52

. html suffix, 42

HTML Tidy, 268

HTML Transitional, 25,52

HTML Writers Guild, 346

HTTP (Hypertext Transfer Protocol), 17,378
http://,85

ht t pequi v attribute, 56-57,356

hyperlinks,378-379
absolute links, 83-84
active link, 119
anchor element, 81-82
broken links, 84-85,304,329
‘click here' phrasing, 319
colors,119-120
creating a basic hyperlink, 81-82
creating a hyperlink that opens in a new window, 86-87
creating a hyperlink to a specific location on another Web page, 89
creating a hyperlink within a document, 87-88
descriptive text, 319
e-mail addresses, 91
file downloads, 90-91
frames,177-179
how they work, 17
image maps, 110
images,99-100,107-108
intradocument hyperlinks, 87-89
link checkers, 284-285,329
mai | t o links, 91
multimedia,237-239
off-site links, 318-319
relative links, 83-84
states,119
underline,120
URL,81-84
visited link, 119

hypermedia,378

hypertext,378

Hypertext Markup Language (HTML), 378
Hypertext Transfer Protocol (HTTP), 17,378

http://

Index

<i > element, 128,355

i d attribute
<appl et > element, 352
<basef ont > element, 352
<par an® element, 357

<i f rane> element, 355

image editing
Adobe Photoshop, 282-283
Jasc PaintShop Pro, 283
Macromedia Fireworks, 283
image maps, 379
<ar ea> element, 109
client-side image maps, 376
creating,108-111
<i ng> element, 109
links,110
<map> element, 109

image rollovers, 224-227

images
alignment,105-106
alternative text, 100-102
animated GlIFs, 111-112
background image, 121-122
border,104-105
clipart, 113
compression,96-97
content,94
copyright,114
digital formats, 113-114
download time, 102-103
file size, 96-98
GIFs,95,97
graphic file formats, 95-97
inserting,98-100
JPEGs,96-97
links,99-100,107-108
look and feel, 95
navigation,94,107-108
optimizing,97-98
PNGs,96-97
size,102-104
sources of low-cost and free images, 113-114
spacing,106-107
stock photography, 113
thumbnails, 110,382
TIFFs,113-114
tiling,121
transparent images, 112
uses,93-95

<i ng> element, 355
al i gn attribute, 105-106
al t attribute, 100-101
animated GIFs, 111
attributes, 355
bor der attribute, 104-105
hei ght attribute, 102-103
hspace attribute, 106-107
image maps, 108-109
singleton tag status, 98
sr ¢ attribute, 99-100,111
usemap attribute, 109
vspace attribute, 106-107
wi dt h attribute, 102-103

Impact Online Web site, 28
inline content, 59,379

input controls (forms)
check boxes, 189-190
creating,187
drop-down lists, 187,192-193
file upload fields, 191
hidden fields, 190-191
password fields, 188-189
radio buttons, 189-190
reset buttons, 194-195
submit buttons, 194-195
text areas, 187,193-194
text fields, 187-188

<i nput > element, 355

attributes, 355
t ype attribute, 187-190,194-195

<i ns> element, 129,355

inserting
images,98-100
paragraphs,60-61
scripts into Web pages, 221
interactivity with databases, 29,246
interface.Seeuser interface
Internal Revenue Service (IRS) Web site, 322,324
internal style sheets (CSS), 213-214,379
Internet, 379
Internet connections (dedicated), 293-294

Internet protocols
File Transfer Protocol (FTP), 17,289,377
Hypertext Transfer Protocol (HTTP), 17,378
Post Office Protocol (POP), 17
Simple Mail Transfer Protocol (SMTP), 17

Internet Service Provider (ISP), 379
intradocument hyperlinks, 87-89
IRS Web site, 322,324

<i si ndex> element, 356

i smap attribute
<i mg> element, 355
<i nput > element, 355

ISO 8859 character sets, 373-374
ISO-Latin-1 character set, 362-367
ISP (Internet Service Provider), 379
italicizing text, 128

iTunes MP3 player, 236

Index

J

Jakob Nielsen's Useit Web site, 344
Jasc PaintShop Pro, 283
Java,379

JavaScript
browser support, 225
form validation, 229-230
image rollovers, 224-227
pop-up windows, 227-229
sources of scripts, 225

JavaScript City Web site, 225

JavaScript For Dummies, Emily A. Vander Veer, 217
JavaScript Kit Web site, 225

JavaScript Source Web site, 225

Java-Scripts.Net Web site, 225

JavaServer Pages For Dummies, Mac Rinehart, 257
JPEG (Joint Photographic Experts Group), 96-97,379
JSP,255-256

Index

K

<kbd> element, 129,356

keywords
metadata,55
search engines, 308

Kira’'s Web Toolbox Web site, 347
Krug, Steve, usability expert, 344

Index

L

<l abel > element, 356

| anguage attribute, 358

language options, 57

layout,379

<l egend> element, 356

<l'i > element, 72-75,356

line breaks, 67—68

linear versus nonlinear approach to design, 340-341
lines (rules), 68—71

| i nk attribute, 119,353

link checkers, 284-285,329
<l i nk> element, 213-215,356
linking
database to a Web page, 246-248
domain name to a Web site, 299

links,378-379
absolute links, 83—84
active link, 119
anchor element, 81-82
broken links, 84-85,304,329
“click here” phrasing, 319
colors,119-120
creating a basic link, 81-82
creating a link that opens in a new window, 86—87
creating a link to a specific location on another Web page, 89
creating a link within a document, 87—88
descriptive text, 319
e-mail addresses, 91
file downloads, 90—91
frames,177-179
how they work, 17
image maps, 110
images,99-100,107-108
intradocument links, 87—-89
link checkers, 284-285,329
mai | t o links, 91
multimedia,237-239
off-site links, 318-319
relative links, 83-84
states,119
underline, 120
URL,81-84
visited link, 119

lists
bulleted lists, 74-76
Cascading Style Sheets (CSS), 206
definition lists, 7677

drop-down lists (forms), 187,192-193
nested lists, 77-79

numbered lists, 72—74

ordered lists, 72—74

types of, 71

unordered lists, 74—76

uses,71

| ongdesc attribute
<f rane> element, 354
<i f rame> element, 355
<i ng> element, 355

| oop attribute, 242
Lynx Web browser, 16,379

Index

M

Macromedia
Director,234
Dreamweaver,217,274-277
Fireworks,283
Flash,235
Web site, 235,277

Macromedia Flash MX For Dummies, Gurdy Leete and Ellen Finkelstein, 235
mai | t o links, 91

maintaining Web sites, 301-305,341,380

<map> element, 109,356

mapping out a Web site, 311-315

mar gi nhei ght attribute
<franme> element, 174-175,354
<i f rame> element, 355

margins
Cascading Style Sheets (CSS), 206
frames,174-175

mar gi nwi dt h attribute

<franme> element, 174-175,354
<i f rame> element, 355
markup languages, 380
markup with HTML, 380
attributes,20-22
browser interpretation, 15-16
DOCTYPE declaration, 52
document structure, 51-53
elements,20-21
entities,20,22-24,377
examples,13-14
help resources, 345
limitations,204,259
testing on browsers, 16
tips for entering, 157
validating,286-289,331,337
mathematical character set, 371-372
Matt's Script archive Web site, 197
max| engt h attribute, 355
medi a attribute
<l i nk> element, 356
<styl e> element, 358

Mega Web Tools Web site, 347
<menu> element, 356
<net a> element, 55-57

metadata,54-55,380
keywords,55-56

page description, 55-56
redirecting users, 56-57
search engines, 55-56

nmet hod attribute, 186,354

Microsoft
Access,250-251
FrontPage,277-278
SQL Server, 251-252
Word97/2000 for Windows, 281

MIDI (Musical Instrument Digital Interface), 233
MOMSpider link checker, 285,329

MPEG-1, Layer Ill (MP3), 233

MPG (Motion Picture Experts Group) video format, 234
MP3 (MPEG-1, Layer lll), 233

MP3 players, 236

multimedia,380
audio formats, 233-234
background music, 242
bandwidth requirements, 231
degree of difficulty, 33
embedding files into Web pages, 239-241
links,237-239
players,235-237,241-242
pros and cons of using, 320
standards,231
streaming media, 242-244
uses,232
video formats, 234-235

mul ti pl e attribute
<opt gr oup> element, 357
<opti on> element, 357
<sel ect > element, 358

music.Seeaudio

Musical Instrument Digital Interface (MIDI), 233

MySQL,249-250

MySQL Bible, Steve Suehring, 258

MySQL Weekend Crash Course, Jay Greenspan, 258

MySQL: Your Visual Blueprint for Creating Open Source Databases, Michael Moncur, 258
MySQL/PHP Database Applications, 2nd Edition, Jay Greenspan and Brad Bulger, 258

Index

N

name attribute
<a> element, 87,352
<appl et > element, 352
<but t on> element, 353
<f or n> element, 354
<f rane> element, 177,35

<i f rame> element, 355
<i ng> element, 355
<i nput > element, 355
<map> element, 356
<net a> element, 55,356
<obj ect > element, 357
<opt gr oup> element, 357
<opti on> element, 357
<par an® element, 357
<sel ect > element, 358
<t ext ar ea> element, 359
nameservers,380
naming Web pages, 41-42
navigation,380
frames,164
home page, 317
images,94,107-108
intradocument links, 87—-89
navigation bar, 162,340,380
rollovers,227
scrolling,340
site maps, 314-315
testing,317-318
topical navigation, 315-317
user interface, 309
nesting,380
elements (HTML markup), 21
frames,179-180

lists,77-79
<pr e> element inside <bl ockquot e> element, 65-66

tables,158
Nielsen, Jakob, usability expert, 324, 344
<nof r ames> element, 166,356
nohr ef attribute, 352
nonlinear versus linear approach to design, 340-341
nor esi ze attribute, 354
<noscri pt > element, 357
noshade attribute, 70
Notepad,12
numbered lists, 72—74

Index

@)

obj ect attribute, 352

<obj ect > element, 239-240,357
 element, 72—74,357
onabort attribute, 220

onbl ur attribute
<a> element, 352
<ar ea> element, 352
<but t on> element, 353
how it works, 221
<i nput > element, 355
<| abel > element, 356
<opt gr oup> element, 357
<opti on> element, 357
<sel ect > element, 358
<t ext ar ea> element, 359

onchange attribute
how it works, 221
<i nput > element, 355
<opt gr oup> element, 357
<opti on> element, 357
<sel ect > element, 358
<t ext ar ea> element, 359

oncl i ck attribute, 221
ondbl cl i ck attribute, 221
onerr or attribute, 220

1-second, 1K rule, 98

onf ocus attribute
<a> element, 352
<ar ea> element, 352
<but t on> element, 353
how it works, 221
<i nput > element, 355
<l abel > element, 356
<opt gr oup> element, 357
<opti on> element, 357
<sel ect > element, 358
<t ext ar ea> element, 359

onkeydown attribute, 221
onkeypr ess attribute, 221
onkeyup attribute, 221
online,380

online catalogs, 247

online training resources, 346

onl oad attribute
<body> element, 353
<f raneset > element, 355

how it works, 220
onnousedown attribute, 221
onnmousenpve attribute, 220
onnmouseout attribute, 221
onmouseover attribute, 221
onnmouseup attribute, 221

onr eset attribute
<f or n> element, 354
how it works, 221

onsel ect attribute

how it works, 221
<i nput > element, 355
<t ext ar ea> element, 359

onsubmni t attribute
<f or n> element, 354
how it works, 221

onunl oad attribute
<body> element, 353
<f raneset > element, 355
how it works, 220

opening a new window, 86—-87
operating system, 380

<opt gr oup> element, 357

optimizing images, 97-98

<opti on> element, 187,192-193,357
Oracle,251-252

ordered lists, 72—74

Index

P
<p> element, 60-61,357

page,380

page description, 54-56

page header, 53

page redirectors, 56-57,330

page refresh, 330

page titles, 308,382

PaintShop Pro (Jasc), 283

pair of tags, 20

paragraphs,60-61

<par an® element, 357

password fields (forms), 188-189

PDF (Portable Document Format), 380
PDIimages.com Web site, 114

peer reviews, 331

Photoshop (Adobe), 282-283

Photoshop All-in-One Desk Reference For Dummies, Barbara Obermeier, 283
PHP,253-254

PHP and MySQL For Dummies, Janet Valade, 258
PHP Bible, 2nd Edition, Tim Converse and Joyce Park, 258
phrase elements, 128-131

players for multimedia, 235-237,241-242

plug-ins,381
downloading,236
Flash,235

PNG (Portable Network Graphics), 96-97
pointers,370-371

POP (Post Office Protocol), 17
populating tables, 155-156

pop-up text screens for alternative text, 100-102

pop-up windows
opening a new window, 86-87
scripting,227-229

Portable Document Format (PDF), 380
Portable Network Graphics (PNG), 96-97
Post Office Protocol (POP), 17

posting Web pages, 45-47

<pr e> element, 65-66,357

predefined style sheets (CSS), 215
preformatted text, 64-66

programming
interactive Web sites, 30
scripts,218-219

Progressive Networks, 236
progressive video streaming, 243
promoting Web sites, 307-308
properties,381

protocols
File Transfer Protocol (FTP), 17,289,377
Hypertext Transfer Protocol (HTTP), 17,378
Post Office Protocol (POP), 17
Real Time Streaming Protocol (RTSP), 243
Simple Mail Transfer Protocol (SMTP), 17

publishing Web pages, 45-47
punctuation character set, 369

Index

Q

<g> element, 358
queries to a database, 247,252-254
QuickTime (QT)
audio,233
functionality,236-237
movies,234-235
qguotes
<bl ockquot e> element, 63-64
<qg> element, 358

Index

R

radio buttons (forms), 189-190
RateGenius Web site, 199

r eadonl y attribute
<i nput > element, 355
<t ext ar ea> element, 359

Real Time Streaming Protocol (RTSP), 243
Real Video (RV) video format, 235

Real Audio (RA), 233

RealNetworks, 236

RealOne Player, 236

real-time video streaming, 243

redirecting users, 56-57,330

refreshing pages, 330

registering
domain names, 299-300
Web sites with search engines, 307

r el attribute
<a> element, 352
<l i nk> element, 356

relative address, 381

relative links, 83-84

reset buttons (forms), 194-195
resources,381

r ev attribute
<a> element, 352
<l i nk> element, 356

Rich Music Format (RMF), 233-234
robots,381

rollovers
degree of difficulty, 33
navigation,227
scripting,219-220,224-227

rows
frames,167-172
tables,140-142

rows attribute
<franeset > element, 167-170,355
<t ext ar ea> element, 359

r owspan attribute
<t d> element, 153-154,359
<t h> element, 359

RTSP (Real Time Streaming Protocol), 243
rules (lines), 68-71

RV (Real Video) video format, 235

Index

S

<s> element, 128,358
<sanp> element, 129,358

saving

Web pages, 41

Word documents as text files, 38
scheme attribute, 356

scope attribute
<t d> element, 359
<t h> element, 359

<scri pt > element, 221-222,358
scripting languages, 224,381

scripts,381
Adobe Golive, 217
CGil scripts, 196-197
client-side scripts, 223
event attributes, 220-221
events,219-220
form validation, 229-230
inserting into Web pages, 221
Macromedia Dreamweaver, 217
pop-up windows, 227-229
programming functionality, 218-219
rollovers,219-220,224-227
server-side scripts, 223
sources of scripts, 225
uses,217-218

ScriptSearch Web site, 197
scroll bars (frames), 175-176
scrolling, use of in navigation, 340

scrol | i ng attribute
<f ranme> element, 175-176,354
<i frame> element, 355

search engines, 381
alternative text (for indexing images), 100
keywords,308
metadata,54-56
page titles, 54
registering your Web site, 307
search forms, 181-184
search tools, 381

<sel ect > element, 187,192-193,358

selectors (CSS), 207,209,381

server-side scripts, 223

SGML (Standard Generalized Markup Language), 260,381
shading horizontal rules, 70

shape attribute
<a> element, 352
<ar ea> element, 109,352

shareware,381

Shockwave Audio (SWA), 234

shopping carts, 33

Shoutcast multimedia streaming service, 236
Simple Mail Transfer Protocol (SMTP), 17
SimpleText,12

singleton tag, 98

site maps, 311-315,327-328,336

site reviews, 332

si ze attribute
<basef ont > element, 352
<f ont > element, 125-127
<hr > element, 69
<i nput > element, 355
<opt gr oup> element, 357
<opti on> element, 357
<sel ect > element, 358

<smal | > element, 128,358

SMTP (Simple Mail Transfer Protocol), 17
Sonigue MP3 player, 236
sound.Seeaudio

spacing of images, 106-107

spam 91

span attribute
<col > element, 353
<col gr oup> element, 144,353

 element, 358

specification,382

spell check, 328-329

spider,382

splitting frames, 179-180

SQL (Structured Query Language), 246247

SQL For Dummies, Allen G. Taylor, 257

SQL Server (Microsoft), 251-252

SQL Weekend Crash Course, Allen G. Taylor, 258

sr ¢ attribute
<bgsound> element, 242
<f r ane> element, 354
<i frame> element, 355
<i ng> element, 99,111,355
<i nput > element, 355
<scri pt > element, 358

Standard Generalized Markup Language (SGML), 260,381
standards

multimedia,231
Web Standards Project, 157

st andby attribute, 357

start attribute, 73

start element (or tag), 20

stock photography, 113
streaming media, 242244
<stri ke> element, 128,358
strikethrough text, 128
 element, 129,358
Structured Query Language (SQL), 246-247
st yl e attribute, 215,352

style classes (CSS), 209-211
<styl e> element, 213-214,358

style rules
Cascading Style Sheets (CSS), 207,209
HTML elements, 215

style (text style) elements, 128-131

style sheets, 382See alsoCascading Style Sheets (CSS)
browser display, 207—208
browser support, 159,203
external style sheet, 377
internal style sheet, 379
testing,203
uses,203-204

<sub> element, 358
submit buttons (forms), 194-195

suffixes of HTML documents, 42
<sup> element, 358

surveying users, 331-332
SWA (Shockwave Audio), 234
SWF (Flash) audio format, 234
Sybase,251-252
symbols,20,22-24

syntax,382

syntax checker, 382

Index

T

t abi ndex attribute
<a> element, 352
<ar ea> element, 352
<but t on> element, 353
<i nput > element, 355
<obj ect > element, 357
<opt gr oup> element, 357
<opti on> element, 357
<sel ect > element, 358
<t ext ar ea> element, 359

<t abl e> element, 358
al i gn attribute, 150-151
attributes,358-359
bor der attribute, 143,145
cel | paddi ng attribute, 148-149
cel | spaci ng attribute, 148-150
hei ght attribute, 148
hierarchy among other table elements, 140-142
wi dt h attribute, 146

tables
alignment,150-152
body,144
borders, 138,143,145
captions,144
Cascading Style Sheets (CSS), 159
cell padding, 148-149
cell spacing, 148-150
cell span, 138,142-143,152-155
cell width, 138
cells,138,140-142,146-147
colors,159-160
column groups, 144
columns,144
creating,140-142
footer,144
head,144
headers,144
height,146,148
invisibility of, 135
layout,138-140,144,159
nesting,158
populating,155-156
rows,140-142
standards,157
table properties (CSS), 206
testing,156
uses,135-137
white space, 148
width,146-147

tag,382.See alsoelements

t ar get attribute
<a> element, 86,177-178
<base> element, 352

<t body> element, 144,359

<t d> element, 359
al i gn attribute, 151
attributes, 359
bgcol or attribute, 159-160
col span attribute, 142-143,152-154
hei ght attribute, 148
hierarchy among other table elements, 140-141
r owspan attribute, 153-154
val i gn attribute, 151-152
wi dt h attribute, 146

technical character set, 372-373
teletype text, 128
template,382

test plan, 382

testing
beta testing, 330,375
browsers, 16,337,339
navigation,317-318
peer reviews, 331
site maps, 328
site reviews, 332
style sheets, 203
tables,156
user feedback, 331-332

text
abbreviations,128
acronyms,128
alternative text, 100-102
big text, 128
block quotes, 63—64
blocks of text, 59—60
boldface,128
Cascading Style Sheets (CSS), 206
citations,128
colors,118,125
computer code, display of, 129
definition text, display of, 129
deleted text, display of, 129
emphasized text, display of, 129
font face, 123-124
font size, 125-128
headings,61-63
inline content, 59
inserted text, display of, 129
italics,128
keyboard input text, display of, 129
line breaks, 67—68
link descriptions, 319
paragraphs,60—61
preformatted text, 64—66

sample output text, display of, 129
small text, 128
spell check, 328-329
strikethrough,128
teletype text, 128
underline text, 128
URL-encoded text, 383
variables, display of, 129
white space, 64—65
wrapping,67-68

text areas (forms), 187,193-194

t ext attribute, 118,353

text editors, 12,36,272-273

text fields (forms), 187-188

text size in headings, 62

text style elements, 128-131

<t ext ar ea> element, 187,193,359

text-only Web browsers, 16
TextPad,36

<t f oot > element, 144,359
<t h> element, 144,359

<t head> element, 144,359

thumbnail images, 110,382

tiling images, 121

titl e attribute
<appl et > element, 352
<styl e> element, 358

<titl e>element, 54,359

titles,382
page titles, 53-54,308
toolbox resources, 347
<t r > element, 360
al i gn attribute, 151
attributes,360

hierarchy among other table elements, 140-141
val i gn attribute, 151-152

training resources, 346

transferring files
via FTP, 300-301
via hosting provider's Web site, 301

transparent images, 112
<t t > element, 128,360

TUCOWS Web site, 111,274,293

t ype attribute
<a> element, 352
<but t on> element, 353
<i nput > element, 187,355
<l i nk> element, 356

<obj ect > element, 357
 element, 74

<par an® element, 357
<scri pt > element, 358
<styl e> element, 358
 element, 75-76

Index

U
<u> element, 128,360

Ul.Seeuser interface (Ul)
 element, 74-76,360

under construction messages, 314

underline
hyperlinks,120
text,128

Uniform Resource Locator. SeeURL
Unix, 382

unordered lists, 74-76

updating Web sites, 301-305

URL,382
bookmark,375
broken links, 84-85
case sensitivity, 84
domain,19
flename,19,85
flename extension, 84
how it works, 18-19
http://,85
hyperlinks,81-84
path,19
protocol,19

URL-encoded text, 383

usability
forms,198
frames,163
resources available, 344

usemap attribute
<i ng> element, 109,355
<i nput > element, 355
<obj ect > element, 357

user feedback, 331-332

user interface (Ul), 383
accessibility,321
design resources, 324
examples,321-324
goals of, 310-311
multimedia, 320
navigation,309
navigation schemes, 315-318
off-site links, 318-319
purpose of, 309
site maps, 311-315

http://

Index

V
valid 383

validating
Cascading Style Sheets (CSS), 209
forms,229-230
HTML,286-289,331,337

validation,383

val i gn attribute
<col > element, 353
<col gr oup> element, 353
<t body> element, 359
<t d> element, 151-152,359
<t f oot > element, 359
<t h> element, 359
<t head> element, 359
<t r> element, 151-152,360

val ue attribute
<but t on> element, 353
<i nput > element, 355
<par an® element, 357

val uet ype attribute, 357
<var > element, 129,360
VBScript,224

VeriSign Web site, 298

video
embedding files into Web pages, 239-241
links,237-239
players,234-235
streaming video, 242-243
video formats, 234-235

viewing Web pages, 42-43
VIVO video format, 235
vl i nk attribute, 119,353

vspace attribute
<appl et > element, 352
<i mg> element, 106-107

Index

w

WAI (Web Accessibility Initiative), 102
WAV (RIFF WAVE) audio format, 234
Web,383

Web browsers, 375
alternative text, 100-102
Cascading Style Sheets (CSS), 159,207-208
character set support, 361
client-side scripts, 223
color settings, 119
colors,116
display instructions, 12-13
frames, 161,166
graphical Web browsers, 16
Hypertext Transfer Protocol (HTTP), 17
image display, 100
interpretation of HTML, 15-16
line breaks, 67
Lynx,16,379
opening a new window, 86-87
page title display, 54
plug-ins,236
redirecting users, 56-57
scripting languages, 224
streaming media, 242-243
style sheets, 203,207-208
testing,16,337,339
text-only Web browsers, 16
viewing Web pages, 42-43
white space, 64-65
XHTML,260,263
XML (Extensible Markup Language), 260

Web Design For Dummies, Lisa Lopuck, 114,324
Web Design Group Web site, 212, 345
Web Developer's Journal Web site, 347
Web Developer's Library Web site, 345
Web Hosting Ratings Web site, 297
Web pages, 383

advanced features, 33-34

content types, 11-12

creating from scratch, 36-43

design tips, 338

editing,43-45

functionality,31-32

hosting,291-297

hosting services, 14-15

. ht msuffix, 42

. htm suffix, 42

layout,337-338

linear versus nonlinear approach to design, 340-341
look and feel, 32
multimedia, 33
naming,41-42
page titles, 308
planning for an entire Web site, 34
posting,45-47
publishing,45-47
saving,41
scripting,33
scripts,221
shopping cart, 33
testing on browsers, 16
viewing,42-43
Web Pages That Suck Web site, 324
Web Reference Web site, 346

Web server, 383
database connections, 256
dedicated Internet connections, 293-294
Hypertext Transfer Protocol (HTTP), 17
requirements,293
role of, 14-15
server-side scripts, 223

Web site resources
Adobe GolLive, 282
Adobe Photoshop, 283
Amazon.com,322-323
Apple QuickTime, 237
ASP.NET,256
BBEdit,280
Bobby,321
Bravenet, 347
Builder.com,96,257
CGI Resource Index, 197
DevGuru,206
Fetch,289
FirstGov,17-18
HomeSite,278
HTML Goodies, 348
HTML Writers Guild, 346
HTMLhelp, 345
Impact Online, 28
IRS,322,324
Jakob Nielsen's Useit, 324, 344
Jasc PaintShop Pro, 283
JavaScript City, 225
JavaScript Kit, 225
JavaScript Source, 225
Java-Scripts.Net,225
JSP,256
Kira's Web Toolbox, 347
Macromedia, 235,277,283
Matt's Script archive, 197
Microsoft Access, 251
Microsoft FrontPage, 278

Microsoft SQL Server, 252
MOMSpider,285

MySQL,250

Oracle,252
PDIimages.com,114

PHP,254

RateGenius,199
ScriptSearch,197

Sybase,252

TUCOWS, 111,274,293
VeriSign,298

Web Design Group, 212

Web Developer's Journal, 347
Web Developer's Library, 345
Web Hosting Ratings, 297
Web Pages That Suck, 324
Web Reference, 346

Web Standards Project, 157
WebAttack, 347

World Wide Mart, 299
WS_FTP Pro for Windows, 289
W3C (World Wide Web Consortium), 29,261
W3C Link Checker, 284

Web sites, 383
accessibility,321
design tips, 338
expanding,305-306,339-340
ghost sites, 341
goals,310
hosting,291-297
layout,337-338
linear versus nonlinear approach to design, 340-341
look and feel, 32,311
maintaining,301-305,341
Mega Web Tools, 347
page redirectors, 330
promoting,307-308
scope,310
site maps, 311-315,327-328,336
site reviews, 332
transferring files, 300-301
‘under construction' messages, 314
updating,301-305
user feedback, 331-332

Web Standards Project, 157

Web Usability For Dummies, Richard Mander and Bud Smith, 324
WebAttack Web site, 347

Web-hosting provider, 383

Webmonkey Web site
ASP resources, 257
CGil scripts article, 196
database resources, 257
Design Basics article, 324

GIF animation tutorial, 112
Good Forms article, 186
graphic formatting tutorial, 96
image map resources, 110
image optimization tutorial, 98
PHP resources, 257
resources available, 347

Site Redesign Tutorial, 324

Web-server software, 293

well-formed document, 383

What You See Is What You Get (WYSIWYG),383
white space, 64-65,148,383

wi dt h attribute
<appl et > element, 352
<col > element, 353
<col gr oup> element, 353
<hr > element, 69
<i f rane> element, 355
<i mg> element, 102-103,355
<obj ect > element, 357
<pr e> element, 357
<t abl e> element, 146
<t d> element, 146

WinAmp MP3 player, 236

windows
opening a new window, 86-87
scripting,227-229

Windows Media Audio (WMA), 234
Windows Media Player, 237,241-242
Word documents, saving as text files, 38
Word97/2000 for Windows (Microsoft), 281
word processing programs, 36
WordPerfect 8.0 for Windows (Corel), 281
World Wide Mart Web site, 299

World Wide Web Consortium (W3C)
Cascading Style Sheets (CSS), 205
HTML 4.01 specification, 26
resources available, 343-344
standards,3
Web Accessibility Guidelines, 102,321
Web site, 29
XML,261

wrapping text, 67-68

WS_FTP Pro for Windows, 289-290,300
W3C.SeeWorld Wide Web Consortium (W3C)
WYSIWYG (What You See Is What You Get), 383

Index

X

XHTML,384
browser support, 260,263
differences from HTML, 260
differences from XML, 260
how it works, 263
HTML Tidy, 268
namespaces,267-268
rules,265-268
switching from HTML to XHTML, 264-265

XML (Extensible Markup Language), 384
browser support, 260
differences from HTML, 260
differences from XHTML, 260
DOCTYPE declaration, 267
Document Type Definition (DTD), 262-263
FAQ Web site, 262
how it works, 261-262
namespaces,267
rules,265-268
uses,261

XML For Dummies, 3rd Edition, Ed Tittel and Natanya Pitts, 263

Cheat Sheet: HTML 4 For Dummies, 4th Edition

Overview

Golden Rules of HTML

m Always nest correctly.

m Always include ending tags in tag pair elements.

m Always quote attribute values.

m Always begin HTML documents with a DOCT YPE declaration.

m Alwaysinclude the <ht M >,<head>,<titl e>, and <body> elements in your document.

Layout and Structure Elements

Element Name Function

<! DOCTYPE> Document type Specifies the version of
HTML used in the document

<address> - </address> Attribution information Lists author contact
information

<body> - </body> Body Defines or indicates a
document’s body

<div> - </div> Logical divisions Marks divisions in a
document

<hl> - </hl> - Headings Identifies first-level through
sixth-level<h6> - </ h6>
headings

<head> - </ head> Head Indicates a document’s
head

<htm > - </htnl > HTML document Identifies an HTML
document

<net a> Meta-information Describes aspects of the

page’s information
structure, contents, or
relationships to other
documents

 -

Localized style formatting

Applies style to subparts of
a paragraph

<title> - </title> Document title Briefly describes document
information
<l- - -> Comments Inserts comments are not

displayed by browsers

Layout Elements

Element Name Function

<dd> - </dd> Definition description Marks the definition for a term
in a glossary list

<dir> - </dir> Directory list Marks an unbulleted list of
short elements

<dl > - </dl > Definition list Marks a special format for
terms and their definitions

<dt> - </dt> Definition term Marks the term being defined
in a glossary list

- List item Marks a member item within a
list of any type

<nenu> - </ nenu> Menu list Marks a pickable list of
elements

 - Ordered list Marks a numbered list of
elements

 - Unordered list Marks a bulleted list of

elements

Text Layout Elements

Element Name Function

<abbr> - </abbr> Abbreviation Identifies expansion for an
acronym

<acronynp - </acronynp Acronym Indicates an acronym

<bl ockquot e> Quote style Sets off long quotations or

citations - </ bl ockquot e>

 Force line break Forces a line break in the on-
screen text flow

<cite> - </cite> Citation markup Marks distinctive text for
citations

<code> - </code> Program code text Used for code samples

 - Deleted text Identifies sections of a Web
page deleted in revision

<df n> - </ dfn> Defined term Emphasizes a term about to

be defined in the text

<enr - </ enp

Emphasis

Emphasizes enclosed text

<ins> - </ins> Inserted text Identifies Web page sections
inserted in revision

<kbd> - </kbd> Keyboard text Marks text entered by the user
at the keyboard

<p> - </ p> Paragraph Breaks text into content blocks

<pre> - </pre> Preformatted text Keeps spacing and layout of
original text in monospaced
font

<g> - </qg> Quotation markup Marks a short quotation within
a sentence

<sanp> - </sanp> Sample output Indicates sample output from

a program or script

 -

Strong emphasis

Provides maximum emphasis
to enclosed text

₋ Subscript Renders text smaller and
slightly lowered

⁻ Superscript Renders text smaller and
slightly raised

<var> - </var> Variable text Marks variable or substitution

for some other value

Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, the For Dummies

BestsellingBook Series logo and all related trade dress are trademarks or registered trademarks of Wiley

Publishing, Inc. All other trademarks are property of their respective owners.

Copyright © 2003 Wiley Publishing, Inc. All rights reserved.

Item 1995-6.

For more information about Wiley Publishing, call 1-800-762-2974.

List of Figures

Chapter 1: The Least You Need to Know about HTML and the Web

Figure 1-1:This Web page has several different components.

Figure 1-2:FirstGov is a gateway that uses hyperlinks to help visitors find government information on
the Web.

Figure 1-3:The components of a URL help it define the exact location of a single file on the Web.
Figure 1-4:ASCII test can't represent all text characters so HT ML entities do instead.

Figure 1-5:Always use entities when you want to display a less-than sign, greater-than sign, or
ampersand in the browser window.

Chapter 2: HTML at Work on the Web

Figure 2-1:The Impact Online Web page is simple but direct - the best way to present its creator's
message.

Figure 2-2:The W3C home page is complex and robust; it helps visitors access the hundreds of other
pages on the W3C site.

Chapter 3: Creating Your First HTML Page

Figure 3-1:Taking a few minutes to sketch your page design makes writing HT ML easier.

Figure 3-2:The letter that is the text for our page in word-processing form.

Figure 3-3:Choose an easy-to-access location and a descriptive filename for your HTML pages.
Figure 3-4:Use Internet Explorer to navigate to your Web pages.

Figure 3-5:Viewing a file in your Web browser.

Figure 3-6:Viewing an HT ML file in your text editor and Web browser at the same time.

Figure 3-7:A change in the HTML is displayed in a browser after a quick save and refresh.

Figure 3-8:Drag and drop HTML files from your local system to a Web server to make them available
on the Internet.

Figure 3-9:After you transfer a file to a Web server, it's available via a URL to anyone with a Web
browser and live Internet connection.

Chapter 4: Structuring Your HTML Documents

Figure 4-1:HTML page titles usually appear in a Web browser's window title bar.

Figure 4-2:When you use a <nmet a> element to create a page redirector, include text that visitors can
click if their browsers can't handle the redirector.

Figure 4-3:0Only Content in the <body>element appears in the browser's window.

Figure 4-4:Web browsers delineate paragraphs with a line break and white space.

Figure 4-5:Use the al i gn attribute with a paragraph to specify its horizontal alignment.
Figure 4-6:Web browsers display headings in decreasing size from level one to level six.
Figure 4-7: Web browsers typically indent a block quote to separate it from paragraphs.
Figure 4-8:Web browsers routinely ignore white space.

Figure 4-9: Use preformat-ted text to force browsers to recognize white space.

Figure 4-10: Use <pr e> with <bl ock quot e> to control white space within a quotation.
Figure 4-11: Using the
 element to specify where lines in block elements should break.
Figure 4-12:Use the <hr > element to add horizontal lines to your page.

Figure 4-13:Use the <hr > attributes to better control how a browser displays the rule.

Figure 4-14:The LANWTrights, Inc. Web site uses hard rules to draw your attention to important
information on the page.

Figure 4-15:Use the and <l i > attributes to create a numbered list.

Figure 4-16: Web browsers set the numbers for your list according to the order items appear in the list.
Figure 4-17: Usethe st art andt ype attributesto guide the display of a numbered list in a browser.
Figure 4-18:An unordered list uses bullets instead of numbers to mark items.

Figure 4-19: Use the t ype attribute to change the bullet style for an unordered list.

Figure 4-20:Definition lists group terms and their related definitions into a single list.

Figure 4-21: Nested lists combine two or more lists for a multi-level organization of information.

Chapter 5: Linking to Online Resources

Figure 5-1:A paragraph with a link to the W3C.
Figure 5-2:Use the t ar get attribute to open a new window in a Web browser to display a linked file.
Figure 5-3:Use anchor elements to mark spots on a page and link to them.

Figure 5-4:This browser prompts you to save or view the ZIP file.

Chapter 6: Finding and Using Images

Figure 6-1:The White House Web page uses images in a variety of ways.
Figure 6-2:Use the <i ng> element to place graphics in a Web page.
Figure 6-3:When a browser doesn't show an image, it shows alternative text instead.

Figure 6-4:Even when a browser shows an image, it may display the alternative text as a pop-up tip as
well.

Figure 6-5:A small box.
Figure 6-6:A small box becomes a long line.

Figure 6-7:Don't use a browser to resize compleximages.

Figure 6-8:Use the bor der attribute to create a border around your image.

Figure 6-9:You can vary image alignment to control image placement on the page.
Figure 6-10:Thehspace and vspace attributes control the white space around an image.
Figure 6-11:Combine image and anchor elements to create a linked image.

Figure 6-12:Image maps turn different areas of an image into linking regions.

Chapter 7: Top Off Your Page with Formatting

Figure 7-1: Use the <body> element attributes to define the colors on your Web page.

Figure 7-2:A back-ground image can be any size; the browser tiles it tofill in the entire page
background.

Figure 7-3:AWeb page with both colors and a background image defined.

Figure 7-4:Be sure to coordinate your text colors and background colors, or your page may be
unreadable.

Figure 7-5:Use the <f ont > element and the f ace attribute to change the font face for sections of
text on the page.

Figure 7-6:Use the <f ont > element and the col or attribute to change the font color for sections of
text on the page.

Figure 7-7:Use the <f ont > element and the si ze attribute to change the font size for sections of text
on the page.

Figure 7-8:Relative font sizes use positive and negative numbers to set font size relative to the
browser's default font size.

Figure 7-9:You can often get the same results using relative font sizes or absolute font sizes.

Figure 7-10:Many of the font style and phrase elements display the same way in a Web browser.

Chapter 8: HTML Tables

Figure 8-1:This Web page uses three different tables for layout. Each table is numbered.
Figure 8-2:This Web page uses one simple table with three cells for its layout.

Figure 8-3:After you delete a few cell walls, an HTML table might not look like much of a table at alll,
but it's perfect for laying out Web page elements.

Figure 8-4:Always start by sketching the table dimensions, even before opening text editor.
Figure 8-5:The beginning og the table structure contains only two rows.

Figure 8-6:Most Web pages that use tables for layout don't use borders; here you can see why.
Figure 8-7:This image doesn't define width properties.

Figure 8-8:This image defines width properties.

Figure 8-9:Cellpadding increases the space within each cell.

Figure 8-10:Cellspacing increases the width of the border.

Figure 8-11:0ur simple table centered.
Figure 8-12:The cell spans two columns.

Figure 8-13:We have changed our table design so that the last cell containing our navigational items
spans two rows.

Figure 8-14:Our simple table with the last rows spanned.

Figure 8-15: Nested tables.

Chapter 9: HTML Frames

Figure 9-1:This site uses two frames.

Figure 9-2:A sketch of Figure 9-1.

Figure 9-3:Navigational elements are defined as arow on top of the content.
Figure 9-4:This Web page consists of two columns.

Figure 9-5:The Web page consists of two rows.

Figure 9-6:The Web page consists of three rows, with the third row taking up the remaining height in
the browser.

Figure 9-7:This frame structure has three rows and two columns, which results in six separate frames.
Figure 9-8:Borders turned off using f r amebor der =" 0".
Figure 9-9:Borders turned on using f r ame- bor der =" 1".

Figure 9-10: The browser window displays a scroll bar for the first frame, yet leaves it off for the
second frame, even though the content is cut off.

Figure 9-11:The first frame, split into two smaller frames that contain navigational elements and a
note to users.

Chapter 10: HTML Forms

Figure 10-1:The IRS home page uses two short search forms to help users find what they are looking
for in minimum time.

Figure 10-2:The refund status search form is a little more complex.

Figure 10-3:A subscription form collects information to help teachers subscribe to an online
newsletter.

Figure 10-4:An online car loan site uses many long and detailed formsto collect necessary data.
Figure 10-5:Text entry fields in a form.

Figure 10-6:You can specify the length and the maximum number of characters for a text field.
Figure 10-7:Password fields are like text fields except that the browser masks the text a user enters.
Figure 10-8: Check boxes and radio buttons.

Figure 10-9:A file upload field.

Figure 10-10:A drop-down list.

Figure 10-11: A drop-down list with modifications.
Figure 10-12:A text box.
Figure 10-13:Submit and reset buttons.

Figure 10-14:A form gateway page helps users prepare to fill out a long form.

Chapter 11: Getting Stylish with CSS

Figure 11-1:An HTML page without style specifications.

Figure 11-2:An HTML page with style specifications in effect.

Figure 11-3:Use classes to target your style rules more precisely.

Figure 11-4: You can create style rules that work with any element by using classes.

Figure 11-5:Inheritance means style rules apply to nested elements.

Chapter 12: HTML and Scripting

Figure 12-1:. .. a script makes a dialog box appear to tell you what you did wrong.
Figure 12-2:When the page loads, it displays the image referenced in the image sr ¢ attribute.
Figure 12-3:When a mouse pointer moves over the image, the browser displays a different graphic.

Figure 12-4:You can use JavaScript to open a Web page in a new window and carefully control the
display of the window.

Figure 12-5:A good use of JavaScript is to validate form data.

Chapter 13: Making Multimedia Magic

Figure 13-1:This site shows a link for downloading an MP3 file.

Figure 13-2:A console (defined as a control) is visible in the Web page.

Chapter 14: Integrating a Database into Your HTML

Figure 14-1: The components of a data-driven Web solution may exist on separate systems.

Chapter 16: Creating an HTML Toolbox

Figure 16-1:The New Document dialog box.
Figure 16-2:Adding a title to your HTML document.
Figure 16-3: HomesSite's interface displaying a blank HTML document.

Figure 16-4:Using the W3C Link Checker we can verify that all links found at www.lanw.com/staff are
not broken.

Figure 16-5:The W3C Validator Web page is simple and easy to use.

Figure 16-6:Error message that found a missing closing </ ti t| e> tag.

Figure 16-7:The basic WS_FTP Pro interface.

Chapter 18: Creating a Great User Interface

Figure 18-1:The site map for the XML For Dummies, 3rd Edition Web site.
Figure 18-2:TheXML For Dummies site without the book examples.
Figure 18-3:The XML For Dummies site with the book examples.

Figure 18-4:The Dummies.com site is organized by topic.

Figure 18-5:The main topic areas on the Dummies.com site are accessible from the top navigation
bar.

Figure 18-6:Main areas on the IRS site are accessible from a persistent navigation bar.

Figure 18-7:Each area of the site uses the same general layout.

List of Tables

Chapter 2: HTML at Work on the Web

Table 2-1: Adding Advanced Features to a Page

Chapter 6: Finding and Using Images

Table 6-1: Choosing the Right File Format

Chapter 7: Top Off Your Page with Formatting

Table 7-1: The 16 Color Names with Their Hex Codes

Appendix A: HTML 4 Tags

Table A-1: HTML Tags

Appendix B: HTML Character Codes

Table B-1: The ISO-Latin-1 Character Set
Table B-2: Greek Characters

Table B-3: Special Punctuation

Table B-4: Letter-like Characters

Table B-5: Arrow Characters

Table B-6: Mathematical Characters
Table B-7: Technical Characters

Table B-8: Playing Card Symbols

Table B-9: ISO 8859 Character Sets

List of Listings

Chapter 1: The Least You Need to Know about HTML and the Web
Listing 1-1: Sample HTML Markup

Chapter 3: Creating Your First HTML Page
Listing 3-1: The Complete HTML Page for the Zog Letter

Chapter 5: Linking to Online Resources
Listing 5-1: Intradocument Hyperlinks

Chapter 7: Top Off Your Page with Formatting

Listing 7-1: Using <body> Element Attributes to Control a Page’s Colors

Listing 7-2: Text Treatments at Work

Chapter 10: HTML Forms

Listing 10-1: A Simple Form Processed by a Form Handler

Chapter 11: Getting Stylish with CSS

Listing 11-1: Adding an Internal Style Sheet to an HTML Document

Chapter 12: HTML and Scripting

Listing 12-1: Verifying the User Fills Out Both Form Fields
Listing 12-2: Image Rollover
Listing 12-3: Pop-Up Window

Listing 12-4: Form Validation

List of Sidebars

Chapter 1: The Least You Need to Know about HTML and the Web

A bevy of browsers

Technical Stuff Introducing Internet protocols

Chapter 5: Linking to Online Resources

Anchor elements aren’t block elements

The importance of http:// in HT ML links

Chapter 6: Finding and Using Images

Creating thumbnail images

Remember Copyright matters

Chapter 7: Top Off Your Page with Formatting

Remember Just because you can do something. . .

Chapter 8: HTML Tables

Other table elements

Chapter 11: Getting Stylish with CSS

Tip__Paying attention to inheritance

Chapter 12: HTML and Scripting

Tip_Finding Scripts Online

Chapter 14: Integrating a Database into Your HTML

Technical Stuff A bit about SOL

Tricks of the Trade The importance of good database design

Technical Stuff _And now for some superfluous, geeky information

Tip Do it yourself or hire an expert?

Chapter 15: How HTML Relates to Other Markup Languages

Warning Avoiding mutant markup

Tip__Keeping markup clean with HTML Tidy

Chapter 16: Creating an HTML Toolbox

Tip_ Where to go for more information

Tricks of the Trade The one-two punch of using a WYSIWYG editor with a helper editor

Warning Word processors and HTML

Chapter 18: Creating a Great User Interface

Tricks of the Trade Design matters

	Table of Contents
	BackCover
	HTML 4 For Dummies, 4th Edition
	Introduction
	About This Book
	How to Use This Book
	Three Presumptuous Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Meeting HTML in Its Natural Environment
	Chapter 1: The Least You Need to Know about HTML and the Web
	Introducing Web Pages in Their Natural Habitat
	Introducing URLs
	Introducing HTML Syntax and Rules
	The HTML 4.01 Specification

	Chapter 2: HTML at Work on the Web
	What Others Are Doing with HTML
	Deciding What You Want to Use HTML For

	Chapter 3: Creating Your First HTML Page
	Before You Get Started
	Creating a Page from Scratch
	Editing an Existing Web Page
	Posting Your Page Online

	Part II: Getting Started with HTML
	Chapter 4: Structuring Your HTML Documents
	Establishing a Basic Document Structure
	Labeling Your Document as an HTML Page
	Adding a Document Header
	Creating the Body of Your HTML Document
	Working with Blocks of Text
	Exerting More Layout Control Over Blocks of Text
	Organizing Information into Lists

	Chapter 5: Linking to Online Resources
	Creating a Basic Link
	Understanding the Difference Between Absolute and Relative Links
	Avoiding Common URL Mistakes
	Beyond Basic Links

	Chapter 6: Finding and Using Images
	The Role of Images in a Web Page
	Creating Web-Friendly Images
	Adding an Image to Your Page
	Images that Link
	Other Interesting Image Tricks
	Finding Sources for Images

	Chapter 7: Top Off Your Page with Formatting
	Defining Color in HTML
	Setting Colors and Backgrounds for Your Entire Page
	Working with Font Faces, Colors, and Sizes
	Boldface, Italics, and Other Text Treatments
	Deciding on the Right Text Elements for the Job

	Part III: Taking HTML to the Next Level
	Chapter 8: HTML Tables
	What Tables Can Do for You
	Introducing Table Basics
	Sketching Your Table
	Constructing Basic Tables
	Adding Spans
	Populating Cells
	Testing Your Table
	Table Making Tips

	Chapter 9: HTML Frames
	When to Use Frames in an HTML Page
	Sketching Frame Components
	Building a Set of Frames
	Building the Frame Content
	Targeting Links within a Frameset
	Nesting Framesets

	Chapter 10: HTML Forms
	The Many Uses for Forms
	Creating Forms
	What Do You Want to Do with Your Form Data?
	Designing Forms That Are Easy to Use

	Part IV: Extending HTML with Other Technologies
	Chapter 11: Getting Stylish with CSS
	Understanding the Problems Style Sheets Solve
	Using Style Sheets to Drive the Display of Your HTML
	What You Can Do with CSS
	Introducing Basic CSS Syntax
	Understanding How Styles Are Inherited
	Adding Style to Your HTML Page

	Chapter 12: HTML and Scripting
	What Scripts Can Do for Your HTML
	Understanding What Makes Scripts Tick
	Going with a Client-Side Script
	May We Suggest Some Nice JavaScript?

	Chapter 13: Making Multimedia Magic
	Using Media Wisely
	Your Web Multimedia Options
	Media Players for Audio and Video
	Linking to Audio and Video
	Embedding Audio and Video Files into Your Page
	Streaming Audio and Video

	Chapter 14: Integrating a Database into Your HTML
	Understanding the Advantages of Using Database Technology on the Web
	Linking Databases to Your Web Page: The Basics
	What You Need to Add a Database to Your HTML
	Finding Database Support from Your ISP or IT Department
	Find Out More

	Chapter 15: How HTML Relates to Other Markup Languages
	Defining Extensibility
	XML: Extending Your Markup
	Introducing XHTML

	Part V: From Web Page to Web Site
	Chapter 16: Creating an HTML Toolbox
	What You Need
	Using Text Editors in the Real World
	Finding an HTML Editor
	Graphics Tools
	Link Checkers
	HTML Validators
	FTP Clients

	Chapter 17: Setting Up Your Online Presence
	Hosting Your HTML
	Hosting Your Pages Yourself
	Using a Hosting Provider
	Getting Your Own Domain
	Transferring Files to Your Web Site
	Maintaining and Updating Your Site
	Expanding Your Site
	Getting Your Site Noticed

	Chapter 18: Creating a Great User Interface
	Defining the Scope and Goals for Your Site
	Mapping Your Site
	Establishing Solid Navigation
	Good Linking Practices
	Choosing the Right Bells and Whistles
	Making Your Site Accessible to Everyone
	Some Excellent User Interfaces
	More Resources on UI Design

	Part VI: The Part of Tens
	Chapter 19: Ten Ways to Exterminate Web Bugs
	Make a List and Check It - Twice
	Master Text Mechanics
	Lack of Live Links - A Loathsome Legacy
	Look for Trouble in All the Right Places
	Cover All the Bases with Peer Reviews
	Use the Best Tools of the Testing Trade
	Foster Feedback
	If You Give to Them, They'll Give to You!
	Schedule Site Reviews

	Chapter 20: Ten HTML Do's and Don'ts
	Never Lose Sight of Your Content
	Structure Your Documents and Your Site
	Keep Track of Those Tags
	Make the Most from the Least
	Build Attractive Pages
	Avoid Browser Dependencies
	Think Evolution, Not Revolution
	Navigating Your Wild and Woolly Web
	Beating the Two-Dimensional Text Trap
	Overcome Inertia through Constant Vigilance

	Part VII: Appendixes
	Appendix A: HTML 4 Tags
	Appendix B: HTML Character Codes
	ISO-Latin-1
	Greek Characters
	Special Punctuation
	Characters That Could Be Letters
	Characters That Point
	Heavy-Duty Mathematical Characters
	Technical Characters
	Hearts, Spades, Clubs, and Diamonds
	More ISO Character Sets Than You Can Shake a Stick At

	Appendix C: Glossary
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X

	Cheat Sheet: HTML 4 For Dummies, 4th Edition
	Layout and Structure Elements
	Layout Elements
	Text Layout Elements

	List of Figures
	List of Tables
	List of Listings
	List of Sidebars

